[PDF] Applied Deep Learning On Graphs - eBooks Review

Applied Deep Learning On Graphs


Applied Deep Learning On Graphs
DOWNLOAD

Download Applied Deep Learning On Graphs PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Applied Deep Learning On Graphs book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Applied Deep Learning On Graphs


Applied Deep Learning On Graphs
DOWNLOAD
Author : Lakshya Khandelwal
language : en
Publisher: Packt Publishing Ltd
Release Date : 2024-12-27

Applied Deep Learning On Graphs written by Lakshya Khandelwal and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-12-27 with Computers categories.


Gain a deep understanding of applied deep learning on graphs from data, algorithm, and engineering viewpoints to construct enterprise-ready solutions using deep learning on graph data for wide range of domains Key Features Explore graph data in real-world systems and leverage graph learning for impactful business results Dive into popular and specialized deep neural architectures like graph convolutional and attention networks Learn how to build scalable and productionizable graph learning solutions Purchase of the print or Kindle book includes a free PDF eBook Book Description With their combined expertise spanning cutting-edge AI product development at industry giants such as Walmart, Adobe, Samsung, and Arista Networks, Lakshya and Subhajoy provide real-world insights into the transformative world of graph neural networks (GNNs). This book demystifies GNNs, guiding you from foundational concepts to advanced techniques and real-world applications. You’ll see how graph data structures power today’s interconnected world, why specialized deep learning approaches are essential, and how to address challenges with existing methods. You’ll start by dissecting early graph representation techniques such as DeepWalk and node2vec. From there, the book takes you through popular GNN architectures, covering graph convolutional and attention networks, autoencoder models, LLMs, and technologies such as retrieval augmented generation on graph data. With a strong theoretical grounding, you’ll seamlessly navigate practical implementations, mastering the critical topics of scalability, interpretability, and application domains such as NLP, recommendations, and computer vision. By the end of this book, you’ll have mastered the underlying ideas and practical coding skills needed to innovate beyond current methods and gained strategic insights into the future of GNN technologies. What you will learn Discover how to extract business value through a graph-centric approach Develop a basic understanding of learning graph attributes using machine learning Identify the limitations of traditional deep learning with graph data and explore specialized graph-based architectures Understand industry applications of graph deep learning, including recommender systems and NLP Identify and overcome challenges in production such as scalability and interpretability Perform node classification and link prediction using PyTorch Geometric Who this book is for For data scientists, machine learning practitioners, researchers delving into graph-based data, and software engineers crafting graph-related applications, this book offers theoretical and practical guidance with real-world examples. A foundational grasp of ML concepts and Python is presumed.



Deep Learning On Graphs


Deep Learning On Graphs
DOWNLOAD
Author : Yao Ma
language : en
Publisher: Cambridge University Press
Release Date : 2021-09-23

Deep Learning On Graphs written by Yao Ma and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-23 with Computers categories.


A comprehensive text on foundations and techniques of graph neural networks with applications in NLP, data mining, vision and healthcare.



Graph Machine Learning


Graph Machine Learning
DOWNLOAD
Author : Claudio Stamile
language : en
Publisher: Packt Publishing Ltd
Release Date : 2021-06-25

Graph Machine Learning written by Claudio Stamile and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-06-25 with Computers categories.


Build machine learning algorithms using graph data and efficiently exploit topological information within your models Key Features Implement machine learning techniques and algorithms in graph data Identify the relationship between nodes in order to make better business decisions Apply graph-based machine learning methods to solve real-life problems Book Description Graph Machine Learning will introduce you to a set of tools used for processing network data and leveraging the power of the relation between entities that can be used for predictive, modeling, and analytics tasks. The first chapters will introduce you to graph theory and graph machine learning, as well as the scope of their potential use. You'll then learn all you need to know about the main machine learning models for graph representation learning: their purpose, how they work, and how they can be implemented in a wide range of supervised and unsupervised learning applications. You'll build a complete machine learning pipeline, including data processing, model training, and prediction in order to exploit the full potential of graph data. After covering the basics, you'll be taken through real-world scenarios such as extracting data from social networks, text analytics, and natural language processing (NLP) using graphs and financial transaction systems on graphs. You'll also learn how to build and scale out data-driven applications for graph analytics to store, query, and process network information, and explore the latest trends on graphs. By the end of this machine learning book, you will have learned essential concepts of graph theory and all the algorithms and techniques used to build successful machine learning applications. What you will learn Write Python scripts to extract features from graphs Distinguish between the main graph representation learning techniques Learn how to extract data from social networks, financial transaction systems, for text analysis, and more Implement the main unsupervised and supervised graph embedding techniques Get to grips with shallow embedding methods, graph neural networks, graph regularization methods, and more Deploy and scale out your application seamlessly Who this book is for This book is for data scientists, data analysts, graph analysts, and graph professionals who want to leverage the information embedded in the connections and relations between data points to boost their analysis and model performance using machine learning. It will also be useful for machine learning developers or anyone who wants to build ML-driven graph databases. A beginner-level understanding of graph databases and graph data is required, alongside a solid understanding of ML basics. You'll also need intermediate-level Python programming knowledge to get started with this book.



Applied Deep Learning


Applied Deep Learning
DOWNLOAD
Author : Dr. Rajkumar Tekchandani
language : en
Publisher: BPB Publications
Release Date : 2023-04-29

Applied Deep Learning written by Dr. Rajkumar Tekchandani and has been published by BPB Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-04-29 with Computers categories.


A comprehensive guide to Deep Learning for Beginners KEY FEATURES ● Learn how to design your own neural network efficiently. ● Learn how to build and train Recurrent Neural Networks (RNNs). ● Understand how encoding and decoding work in Deep Neural Networks. DESCRIPTION Deep Learning has become increasingly important due to the growing need to process and make sense of vast amounts of data in various fields. If you want to gain a deeper understanding of the techniques and implementations of deep learning, then this book is for you. The book presents you with a thorough introduction to AI and Machine learning, starting from the basics and progressing to a comprehensive coverage of Deep Learning with Python. You will be introduced to the intuition of Neural Networks and how to design and train them effectively. Moving on, you will learn how to use Convolutional Neural Networks for image recognition and other visual tasks. The book then focuses on localization and object detection, which are crucial tasks in many applications, including self-driving cars and robotics. You will also learn how to use Deep Learning algorithms to identify and locate objects in images and videos. In addition, you will gain knowledge on how to create and train Recurrent Neural Networks (RNNs), as well as explore more advanced variations of RNNs. Lastly, you will learn about Generative Adversarial Networks (GAN), which are used for tasks like image generation and style transfer. WHAT YOU WILL LEARN ● Learn how to work efficiently with various Convolutional models. ● Learn how to utilize the You Only Look Once (YOLO) framework for object detection and localization. ● Understand how to use Recurrent Neural Networks for Sequence Learning. ● Learn how to solve the vanishing gradient problem with LSTM. ● Distinguish between fake and real images using various Generative Adversarial Networks. WHO THIS BOOK IS FOR This book is intended for both current and aspiring Data Science and AI professionals, as well as students of engineering, computer applications, and masters programs interested in Deep learning. TABLE OF CONTENTS 1. Basics of Artificial Intelligence and Machine Learning 2. Introduction to Deep Learning with Python 3. Intuition of Neural Networks 4. Convolutional Neural Networks 5. Localization and Object Detection 6. Sequence Modeling in Neural Networks and Recurrent Neural Networks (RNN) 7. Gated Recurrent Unit, Long Short-Term Memory, and Siamese Networks 8. Generative Adversarial Networks



Applied Deep Learning


Applied Deep Learning
DOWNLOAD
Author : Umberto Michelucci
language : en
Publisher: Apress
Release Date : 2018-09-07

Applied Deep Learning written by Umberto Michelucci and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-07 with Computers categories.


Work with advanced topics in deep learning, such as optimization algorithms, hyper-parameter tuning, dropout, and error analysis as well as strategies to address typical problems encountered when training deep neural networks. You’ll begin by studying the activation functions mostly with a single neuron (ReLu, sigmoid, and Swish), seeing how to perform linear and logistic regression using TensorFlow, and choosing the right cost function. The next section talks about more complicated neural network architectures with several layers and neurons and explores the problem of random initialization of weights. An entire chapter is dedicated to a complete overview of neural network error analysis, giving examples of solving problems originating from variance, bias, overfitting, and datasets coming from different distributions. Applied Deep Learning also discusses how to implement logistic regression completely from scratch without using any Python library except NumPy, to let you appreciate how libraries such as TensorFlow allow quick and efficient experiments. Case studies for each method are included to put into practice all theoretical information. You’ll discover tips and tricks for writing optimized Python code (for example vectorizing loops with NumPy). What You Will Learn Implement advanced techniques in the right way in Python and TensorFlow Debug and optimize advanced methods (such as dropout and regularization) Carry out error analysis (to realize if one has a bias problem, a variance problem, a data offset problem, and so on) Set up a machine learning project focused on deep learning on a complex dataset Who This Book Is For Readers with a medium understanding of machine learning, linear algebra, calculus, and basic Python programming.



Graph Deep Learning


Graph Deep Learning
DOWNLOAD
Author : Muhan Zhang (Computer scientist)
language : en
Publisher:
Release Date : 2019

Graph Deep Learning written by Muhan Zhang (Computer scientist) and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019 with Electronic dissertations categories.


The past few years have seen the growing prevalence of deep neural networks on various application domains including image processing, computer vision, speech recognition, machine translation, self-driving cars, game playing, social networks, bioinformatics, and healthcare etc. Due to the broad applications and strong performance, deep learning, a subfield of machine learning and artificial intelligence, is changing everyone's life.Graph learning has been another hot field among the machine learning and data mining communities, which learns knowledge from graph-structured data. Examples of graph learning range from social network analysis such as community detection and link prediction, to relational machine learning such as knowledge graph completion and recommender systems, to mutli-graph tasks such as graph classification and graph generation etc.An emerging new field, graph deep learning, aims at applying deep learning to graphs. To deal with graph-structured data, graph neural networks (GNNs) are invented in recent years which directly take graphs as input and output graph/node representations. Although GNNs have shown superior performance than traditional methods in tasks such as semi-supervised node classification, there still exist a wide range of other important graph learning problems where either GNNs' applicabilities have not been explored or GNNs only have less satisfying performance.In this dissertation, we dive deeper into the field of graph deep learning. By developing new algorithms, architectures and theories, we push graph neural networks' boundaries to a much wider range of graph learning problems. The problems we have explored include: 1) graph classification; 2) medical ontology embedding; 3) link prediction; 4) recommender systems; 5) graph generation; and 6) graph structure optimization.We first focus on two graph representation learning problems: graph classification and medical ontology embedding.For graph classification, we develop a novel deep GNN architecture which aggregates node features through a novel SortPooling layer that replaces the simple summing used in previous works. We demonstrate its state-of-the-art graph classification performance on benchmark datasets. For medical ontology embedding, we propose a novel hierarchical attention propagation model, which uses attention mechanism to learn embeddings of medical concepts from hierarchically-structured medical ontologies such as ICD-9 and CCS. We validate the learned embeddings on sequential procedure/diagnosis prediction tasks with real patient data.Then we investigate GNNs' potential for predicting relations, specifically link prediction and recommender systems. For link prediction, we first develop a theory unifying various traditional link prediction heuristics, and then design a framework to automatically learn suitable heuristics from a given network based on GNNs. Our model shows unprecedented strong link prediction performance, significantly outperforming all traditional methods. For recommender systems, we propose a novel graph-based matrix completion model, which uses a GNN to learn graph structure features from the bipartite graph formed by user and item interactions. Our model not only outperforms various matrix completion baselines, but also demonstrates excellent transfer learning ability -- a model trained on MovieLens can be directly used to predict Douban movie ratings with high performance.Finally, we explore GNNs' applicability to graph generation and graph structure optimization. We focus on a specific type of graphs which usually carry computations on them, namely directed acyclic graphs (DAGs). We develop a variational autoencoder (VAE) for DAGs and prove that it can injectively map computations into a latent space. This injectivity allows us to perform optimization in the continuous latent space instead of the original discrete structure space. We then apply our VAE to two types of DAGs, neural network architectures and Bayesian networks. Experiments show that our model not only generates novel and valid DAGs, but also finds high-quality neural architectures and Bayesian networks through performing Bayesian optimization in its latent space.



Introduction To Graph Neural Networks


Introduction To Graph Neural Networks
DOWNLOAD
Author : Zhiyuan Liu
language : en
Publisher: Springer Nature
Release Date : 2022-05-31

Introduction To Graph Neural Networks written by Zhiyuan Liu and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-31 with Computers categories.


Graphs are useful data structures in complex real-life applications such as modeling physical systems, learning molecular fingerprints, controlling traffic networks, and recommending friends in social networks. However, these tasks require dealing with non-Euclidean graph data that contains rich relational information between elements and cannot be well handled by traditional deep learning models (e.g., convolutional neural networks (CNNs) or recurrent neural networks (RNNs)). Nodes in graphs usually contain useful feature information that cannot be well addressed in most unsupervised representation learning methods (e.g., network embedding methods). Graph neural networks (GNNs) are proposed to combine the feature information and the graph structure to learn better representations on graphs via feature propagation and aggregation. Due to its convincing performance and high interpretability, GNN has recently become a widely applied graph analysis tool. This book provides a comprehensive introduction to the basic concepts, models, and applications of graph neural networks. It starts with the introduction of the vanilla GNN model. Then several variants of the vanilla model are introduced such as graph convolutional networks, graph recurrent networks, graph attention networks, graph residual networks, and several general frameworks. Variants for different graph types and advanced training methods are also included. As for the applications of GNNs, the book categorizes them into structural, non-structural, and other scenarios, and then it introduces several typical models on solving these tasks. Finally, the closing chapters provide GNN open resources and the outlook of several future directions.



Machine Learning And Knowledge Discovery In Databases Research Track


Machine Learning And Knowledge Discovery In Databases Research Track
DOWNLOAD
Author : Nuria Oliver
language : en
Publisher: Springer Nature
Release Date : 2021-09-09

Machine Learning And Knowledge Discovery In Databases Research Track written by Nuria Oliver and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-09 with Computers categories.


The multi-volume set LNAI 12975 until 12979 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2021, which was held during September 13-17, 2021. The conference was originally planned to take place in Bilbao, Spain, but changed to an online event due to the COVID-19 pandemic. The 210 full papers presented in these proceedings were carefully reviewed and selected from a total of 869 submissions. The volumes are organized in topical sections as follows: Research Track: Part I: Online learning; reinforcement learning; time series, streams, and sequence models; transfer and multi-task learning; semi-supervised and few-shot learning; learning algorithms and applications. Part II: Generative models; algorithms and learning theory; graphs and networks; interpretation, explainability, transparency, safety. Part III: Generative models; search and optimization; supervised learning; text mining and natural language processing; image processing, computer vision and visual analytics. Applied Data Science Track: Part IV: Anomaly detection and malware; spatio-temporal data; e-commerce and finance; healthcare and medical applications (including Covid); mobility and transportation. Part V: Automating machine learning, optimization, and feature engineering; machine learning based simulations and knowledge discovery; recommender systems and behavior modeling; natural language processing; remote sensing, image and video processing; social media.



Graph Machine Learning


Graph Machine Learning
DOWNLOAD
Author : Aldo Marzullo
language : en
Publisher: Packt Publishing Ltd
Release Date : 2025-07-18

Graph Machine Learning written by Aldo Marzullo and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-07-18 with Mathematics categories.


Enhance your data science skills with this updated edition featuring new chapters on LLMs, temporal graphs, and updated examples with modern frameworks, including PyTorch Geometric, and DGL Key Features Master new graph ML techniques through updated examples using PyTorch Geometric and Deep Graph Library (DGL) Explore GML frameworks and their main characteristics Leverage LLMs for machine learning on graphs and learn about temporal learning Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionGraph Machine Learning, Second Edition builds on its predecessor’s success, delivering the latest tools and techniques for this rapidly evolving field. From basic graph theory to advanced ML models, you’ll learn how to represent data as graphs to uncover hidden patterns and relationships, with practical implementation emphasized through refreshed code examples. This thoroughly updated edition replaces outdated examples with modern alternatives such as PyTorch and DGL, available on GitHub to support enhanced learning. The book also introduces new chapters on large language models and temporal graph learning, along with deeper insights into modern graph ML frameworks. Rather than serving as a step-by-step tutorial, it focuses on equipping you with fundamental problem-solving approaches that remain valuable even as specific technologies evolve. You will have a clear framework for assessing and selecting the right tools. By the end of this book, you’ll gain both a solid understanding of graph machine learning theory and the skills to apply it to real-world challenges.What you will learn Implement graph ML algorithms with examples in StellarGraph, PyTorch Geometric, and DGL Apply graph analysis to dynamic datasets using temporal graph ML Enhance NLP and text analytics with graph-based techniques Solve complex real-world problems with graph machine learning Build and scale graph-powered ML applications effectively Deploy and scale your application seamlessly Who this book is for This book is for data scientists, ML professionals, and graph specialists looking to deepen their knowledge of graph data analysis or expand their machine learning toolkit. Prior knowledge of Python and basic machine learning principles is recommended.



Applied Machine Learning With Scikit Learn


Applied Machine Learning With Scikit Learn
DOWNLOAD
Author : Richard Johnson
language : en
Publisher: HiTeX Press
Release Date : 2025-06-20

Applied Machine Learning With Scikit Learn written by Richard Johnson and has been published by HiTeX Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-06-20 with Computers categories.


"Applied Machine Learning with Scikit-learn" "Applied Machine Learning with Scikit-learn" is a comprehensive and in-depth guide that empowers readers to build robust machine learning solutions using the popular Scikit-learn library. The book navigates through the complete lifecycle of machine learning projects, starting from the foundational architecture and integration of Scikit-learn within the broader PyData ecosystem, to advanced data preparation, feature engineering, and the design of custom components. Readers benefit from best practices in scalability, reproducibility, and extensibility, while gaining insights into contributing to and extending the library to suit cutting-edge applications. A core strength of this book is its rigorous treatment of both supervised and unsupervised learning techniques. It offers advanced coverage on classification and regression models—including linear methods, ensemble approaches, support vector machines, and probabilistic classifiers—while addressing practical challenges like imbalanced data, custom scoring, and evaluation strategies. The unsupervised learning chapters explore clustering, dimensionality reduction, density estimation, and feature discovery, complete with methodologies for model selection, validation, and interpretation. Specialized sections on experiment tracking, hyperparameter tuning, and prevention of data leakage ensure that readers can conduct reliable analyses in research or production settings. Recognizing the growing importance of model deployment, monitoring, and integration, the book dedicates ample attention to scaling workflows, building production-grade APIs, automating model retraining, and complying with security and privacy standards. Advanced topics guide practitioners through contemporary machine learning frontiers—such as AutoML, hybrid deep learning integration, time series analysis, weakly supervised learning, and graph-based models. By merging practical implementation advice with a deep understanding of the underlying principles, "Applied Machine Learning with Scikit-learn" serves as an invaluable reference for data scientists, engineers, and researchers striving to leverage the full potential of Scikit-learn in modern machine learning endeavors.