Applied Natural Language Processing With Python

DOWNLOAD
Download Applied Natural Language Processing With Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Applied Natural Language Processing With Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Applied Natural Language Processing With Python
DOWNLOAD
Author : Taweh Beysolow II
language : en
Publisher: Apress
Release Date : 2018-09-12
Applied Natural Language Processing With Python written by Taweh Beysolow II and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-12 with Computers categories.
Learn to harness the power of AI for natural language processing, performing tasks such as spell check, text summarization, document classification, and natural language generation. Along the way, you will learn the skills to implement these methods in larger infrastructures to replace existing code or create new algorithms. Applied Natural Language Processing with Python starts with reviewing the necessary machine learning concepts before moving onto discussing various NLP problems. After reading this book, you will have the skills to apply these concepts in your own professional environment. What You Will Learn Utilize various machine learning and natural language processing libraries such as TensorFlow, Keras, NLTK, and Gensim Manipulate and preprocess raw text data in formats such as .txt and .pdf Strengthen your skills in data science by learning both the theory and the application of various algorithms Who This Book Is For You should be at least a beginner in ML to get the most out of this text, but you needn’t feel that you need be an expert to understand the content.
Applied Natural Language Processing In The Enterprise
DOWNLOAD
Author : Ankur A. Patel
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2021-05-12
Applied Natural Language Processing In The Enterprise written by Ankur A. Patel and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-05-12 with Computers categories.
NLP has exploded in popularity over the last few years. But while Google, Facebook, OpenAI, and others continue to release larger language models, many teams still struggle with building NLP applications that live up to the hype. This hands-on guide helps you get up to speed on the latest and most promising trends in NLP. With a basic understanding of machine learning and some Python experience, you'll learn how to build, train, and deploy models for real-world applications in your organization. Authors Ankur Patel and Ajay Uppili Arasanipalai guide you through the process using code and examples that highlight the best practices in modern NLP. Use state-of-the-art NLP models such as BERT and GPT-3 to solve NLP tasks such as named entity recognition, text classification, semantic search, and reading comprehension Train NLP models with performance comparable or superior to that of out-of-the-box systems Learn about Transformer architecture and modern tricks like transfer learning that have taken the NLP world by storm Become familiar with the tools of the trade, including spaCy, Hugging Face, and fast.ai Build core parts of the NLP pipeline--including tokenizers, embeddings, and language models--from scratch using Python and PyTorch Take your models out of Jupyter notebooks and learn how to deploy, monitor, and maintain them in production
Hands On Natural Language Processing With Python
DOWNLOAD
Author : Rajesh Arumugam
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-07-18
Hands On Natural Language Processing With Python written by Rajesh Arumugam and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-07-18 with Computers categories.
Foster your NLP applications with the help of deep learning, NLTK, and TensorFlow Key Features Weave neural networks into linguistic applications across various platforms Perform NLP tasks and train its models using NLTK and TensorFlow Boost your NLP models with strong deep learning architectures such as CNNs and RNNs Book Description Natural language processing (NLP) has found its application in various domains, such as web search, advertisements, and customer services, and with the help of deep learning, we can enhance its performances in these areas. Hands-On Natural Language Processing with Python teaches you how to leverage deep learning models for performing various NLP tasks, along with best practices in dealing with today’s NLP challenges. To begin with, you will understand the core concepts of NLP and deep learning, such as Convolutional Neural Networks (CNNs), recurrent neural networks (RNNs), semantic embedding, Word2vec, and more. You will learn how to perform each and every task of NLP using neural networks, in which you will train and deploy neural networks in your NLP applications. You will get accustomed to using RNNs and CNNs in various application areas, such as text classification and sequence labeling, which are essential in the application of sentiment analysis, customer service chatbots, and anomaly detection. You will be equipped with practical knowledge in order to implement deep learning in your linguistic applications using Python's popular deep learning library, TensorFlow. By the end of this book, you will be well versed in building deep learning-backed NLP applications, along with overcoming NLP challenges with best practices developed by domain experts. What you will learn Implement semantic embedding of words to classify and find entities Convert words to vectors by training in order to perform arithmetic operations Train a deep learning model to detect classification of tweets and news Implement a question-answer model with search and RNN models Train models for various text classification datasets using CNN Implement WaveNet a deep generative model for producing a natural-sounding voice Convert voice-to-text and text-to-voice Train a model to convert speech-to-text using DeepSpeech Who this book is for Hands-on Natural Language Processing with Python is for you if you are a developer, machine learning or an NLP engineer who wants to build a deep learning application that leverages NLP techniques. This comprehensive guide is also useful for deep learning users who want to extend their deep learning skills in building NLP applications. All you need is the basics of machine learning and Python to enjoy the book.
Applied Natural Language Processing With Python
DOWNLOAD
Author : Taweh Beysolow II
language : en
Publisher: Apress
Release Date : 2018-09-11
Applied Natural Language Processing With Python written by Taweh Beysolow II and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-11 with Computers categories.
Learn to harness the power of AI for natural language processing, performing tasks such as spell check, text summarization, document classification, and natural language generation. Along the way, you will learn the skills to implement these methods in larger infrastructures to replace existing code or create new algorithms. Applied Natural Language Processing with Python starts with reviewing the necessary machine learning concepts before moving onto discussing various NLP problems. After reading this book, you will have the skills to apply these concepts in your own professional environment. What You Will Learn Utilize various machine learning and natural language processing libraries such as TensorFlow, Keras, NLTK, and Gensim Manipulate and preprocess raw text data in formats such as .txt and .pdf Strengthen your skills in data science by learning both the theory and the application of various algorithms Who This Book Is For You should be at least a beginner in ML to get the most out of this text, but you needn’t feel that you need be an expert to understand the content.
Applied Text Analysis With Python
DOWNLOAD
Author : Benjamin Bengfort
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2018-06-11
Applied Text Analysis With Python written by Benjamin Bengfort and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-06-11 with Computers categories.
From news and speeches to informal chatter on social media, natural language is one of the richest and most underutilized sources of data. Not only does it come in a constant stream, always changing and adapting in context; it also contains information that is not conveyed by traditional data sources. The key to unlocking natural language is through the creative application of text analytics. This practical book presents a data scientist’s approach to building language-aware products with applied machine learning. You’ll learn robust, repeatable, and scalable techniques for text analysis with Python, including contextual and linguistic feature engineering, vectorization, classification, topic modeling, entity resolution, graph analysis, and visual steering. By the end of the book, you’ll be equipped with practical methods to solve any number of complex real-world problems. Preprocess and vectorize text into high-dimensional feature representations Perform document classification and topic modeling Steer the model selection process with visual diagnostics Extract key phrases, named entities, and graph structures to reason about data in text Build a dialog framework to enable chatbots and language-driven interaction Use Spark to scale processing power and neural networks to scale model complexity
Natural Language Processing In Action
DOWNLOAD
Author : Hannes Hapke
language : en
Publisher: Simon and Schuster
Release Date : 2019-03-16
Natural Language Processing In Action written by Hannes Hapke and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-16 with Computers categories.
Summary Natural Language Processing in Action is your guide to creating machines that understand human language using the power of Python with its ecosystem of packages dedicated to NLP and AI. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Recent advances in deep learning empower applications to understand text and speech with extreme accuracy. The result? Chatbots that can imitate real people, meaningful resume-to-job matches, superb predictive search, and automatically generated document summaries—all at a low cost. New techniques, along with accessible tools like Keras and TensorFlow, make professional-quality NLP easier than ever before. About the Book Natural Language Processing in Action is your guide to building machines that can read and interpret human language. In it, you'll use readily available Python packages to capture the meaning in text and react accordingly. The book expands traditional NLP approaches to include neural networks, modern deep learning algorithms, and generative techniques as you tackle real-world problems like extracting dates and names, composing text, and answering free-form questions. What's inside Some sentences in this book were written by NLP! Can you guess which ones? Working with Keras, TensorFlow, gensim, and scikit-learn Rule-based and data-based NLP Scalable pipelines About the Reader This book requires a basic understanding of deep learning and intermediate Python skills. About the Author Hobson Lane, Cole Howard, and Hannes Max Hapke are experienced NLP engineers who use these techniques in production. Table of Contents PART 1 - WORDY MACHINES Packets of thought (NLP overview) Build your vocabulary (word tokenization) Math with words (TF-IDF vectors) Finding meaning in word counts (semantic analysis) PART 2 - DEEPER LEARNING (NEURAL NETWORKS) Baby steps with neural networks (perceptrons and backpropagation) Reasoning with word vectors (Word2vec) Getting words in order with convolutional neural networks (CNNs) Loopy (recurrent) neural networks (RNNs) Improving retention with long short-term memory networks Sequence-to-sequence models and attention PART 3 - GETTING REAL (REAL-WORLD NLP CHALLENGES) Information extraction (named entity extraction and question answering) Getting chatty (dialog engines) Scaling up (optimization, parallelization, and batch processing)
Practical Natural Language Processing With Python
DOWNLOAD
Author : Mathangi Sri
language : en
Publisher: Apress
Release Date : 2020-12-01
Practical Natural Language Processing With Python written by Mathangi Sri and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-01 with Computers categories.
Work with natural language tools and techniques to solve real-world problems. This book focuses on how natural language processing (NLP) is used in various industries. Each chapter describes the problem and solution strategy, then provides an intuitive explanation of how different algorithms work and a deeper dive on code and output in Python. Practical Natural Language Processing with Python follows a case study-based approach. Each chapter is devoted to an industry or a use case, where you address the real business problems in that industry and the various ways to solve them. You start with various types of text data before focusing on the customer service industry, the type of data available in that domain, and the common NLP problems encountered. Here you cover the bag-of-words model supervised learning technique as you try to solve the case studies. Similar depth is given to other use cases such as online reviews, bots, finance, and so on. As you cover the problems in these industries you’ll also cover sentiment analysis, named entity recognition, word2vec, word similarities, topic modeling, deep learning, and sequence to sequence modelling. By the end of the book, you will be able to handle all types of NLP problems independently. You will also be able to think in different ways to solve language problems. Code and techniques for all the problems are provided in the book. What You Will Learn Build an understanding of NLP problems in industry Gain the know-how to solve a typical NLP problem using language-based models and machine learning Discover the best methods to solve a business problem using NLP - the tried and tested ones Understand the business problems that are tough to solve Who This Book Is For Analytics and data science professionals who want to kick start NLP, and NLP professionals who want to get new ideas to solve the problems at hand.
Natural Language Processing With Pytorch
DOWNLOAD
Author : Delip Rao
language : en
Publisher: O'Reilly Media
Release Date : 2019-01-22
Natural Language Processing With Pytorch written by Delip Rao and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-22 with Computers categories.
Natural Language Processing (NLP) provides boundless opportunities for solving problems in artificial intelligence, making products such as Amazon Alexa and Google Translate possible. If you’re a developer or data scientist new to NLP and deep learning, this practical guide shows you how to apply these methods using PyTorch, a Python-based deep learning library. Authors Delip Rao and Brian McMahon provide you with a solid grounding in NLP and deep learning algorithms and demonstrate how to use PyTorch to build applications involving rich representations of text specific to the problems you face. Each chapter includes several code examples and illustrations. Explore computational graphs and the supervised learning paradigm Master the basics of the PyTorch optimized tensor manipulation library Get an overview of traditional NLP concepts and methods Learn the basic ideas involved in building neural networks Use embeddings to represent words, sentences, documents, and other features Explore sequence prediction and generate sequence-to-sequence models Learn design patterns for building production NLP systems
Practical Natural Language Processing
DOWNLOAD
Author : Sowmya Vajjala
language : en
Publisher: O'Reilly Media
Release Date : 2020-06-17
Practical Natural Language Processing written by Sowmya Vajjala and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-17 with Computers categories.
Many books and courses tackle natural language processing (NLP) problems with toy use cases and well-defined datasets. But if you want to build, iterate, and scale NLP systems in a business setting and tailor them for particular industry verticals, this is your guide. Software engineers and data scientists will learn how to navigate the maze of options available at each step of the journey. Through the course of the book, authors Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta, and Harshit Surana will guide you through the process of building real-world NLP solutions embedded in larger product setups. You’ll learn how to adapt your solutions for different industry verticals such as healthcare, social media, and retail. With this book, you’ll: Understand the wide spectrum of problem statements, tasks, and solution approaches within NLP Implement and evaluate different NLP applications using machine learning and deep learning methods Fine-tune your NLP solution based on your business problem and industry vertical Evaluate various algorithms and approaches for NLP product tasks, datasets, and stages Produce software solutions following best practices around release, deployment, and DevOps for NLP systems Understand best practices, opportunities, and the roadmap for NLP from a business and product leader’s perspective
Natural Language Processing Recipes
DOWNLOAD
Author : Akshay Kulkarni
language : en
Publisher:
Release Date : 2021
Natural Language Processing Recipes written by Akshay Kulkarni and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021 with categories.
Focus on implementing end-to-end projects using Python and leverage state-of-the-art algorithms. This book teaches you to efficiently use a wide range of natural language processing (NLP) packages to: implement text classification, identify parts of speech, utilize topic modeling, text summarization, sentiment analysis, information retrieval, and many more applications of NLP. The book begins with text data collection, web scraping, and the different types of data sources. It explains how to clean and pre-process text data, and offers ways to analyze data with advanced algorithms. You then explore semantic and syntactic analysis of the text. Complex NLP solutions that involve text normalization are covered along with advanced pre-processing methods, POS tagging, parsing, text summarization, sentiment analysis, word2vec, seq2seq, and much more. The book presents the fundamentals necessary for applications of machine learning and deep learning in NLP. This second edition goes over advanced techniques to convert text to features such as Glove, Elmo, Bert, etc. It also includes an understanding of how transformers work, taking sentence BERT and GPT as examples. The final chapters explain advanced industrial applications of NLP with solution implementation and leveraging the power of deep learning techniques for NLP problems. It also employs state-of-the-art advanced RNNs, such as long short-term memory, to solve complex text generation tasks. After reading this book, you will have a clear understanding of the challenges faced by different industries and you will have worked on multiple examples of implementing NLP in the real world. You will: Know the core concepts of implementing NLP and various approaches to natural language processing (NLP), including NLP using Python libraries such as NLTK, textblob, SpaCy, Standford CoreNLP, and more Implement text pre-processing and feature engineering in NLP, including advanced methods of feature engineering Understand and implement the concepts of information retrieval, text summarization, sentiment analysis, text classification, and other advanced NLP techniques leveraging machine learning and deep learning.