[PDF] Applied Statistics I An R Companion For Applied Statistics I - eBooks Review

Applied Statistics I An R Companion For Applied Statistics I


Applied Statistics I An R Companion For Applied Statistics I
DOWNLOAD

Download Applied Statistics I An R Companion For Applied Statistics I PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Applied Statistics I An R Companion For Applied Statistics I book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



R Companion To Elementary Applied Statistics


R Companion To Elementary Applied Statistics
DOWNLOAD
Author : Christopher Hay-Jahans
language : en
Publisher: CRC Press
Release Date : 2019-01-02

R Companion To Elementary Applied Statistics written by Christopher Hay-Jahans and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-02 with Mathematics categories.


The R Companion to Elementary Applied Statistics includes traditional applications covered in elementary statistics courses as well as some additional methods that address questions that might arise during or after the application of commonly used methods. Beginning with basic tasks and computations with R, readers are then guided through ways to bring data into R, manipulate the data as needed, perform common statistical computations and elementary exploratory data analysis tasks, prepare customized graphics, and take advantage of R for a wide range of methods that find use in many elementary applications of statistics. Features: Requires no familiarity with R or programming to begin using this book. Can be used as a resource for a project-based elementary applied statistics course, or for researchers and professionals who wish to delve more deeply into R. Contains an extensive array of examples that illustrate ideas on various ways to use pre-packaged routines, as well as on developing individualized code. Presents quite a few methods that may be considered non-traditional, or advanced. Includes accompanying carefully documented script files that contain code for all examples presented, and more. R is a powerful and free product that is gaining popularity across the scientific community in both the professional and academic arenas. Statistical methods discussed in this book are used to introduce the fundamentals of using R functions and provide ideas for developing further skills in writing R code. These ideas are illustrated through an extensive collection of examples. About the Author: Christopher Hay-Jahans received his Doctor of Arts in mathematics from Idaho State University in 1999. After spending three years at University of South Dakota, he moved to Juneau, Alaska, in 2002 where he has taught a wide range of undergraduate courses at University of Alaska Southeast.



An R Companion For Applied Statistics I


An R Companion For Applied Statistics I
DOWNLOAD
Author : Danney Rasco
language : en
Publisher: SAGE Publications
Release Date : 2020-01-28

An R Companion For Applied Statistics I written by Danney Rasco and has been published by SAGE Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-28 with Social Science categories.


An R Companion for Applied Statistics I: Basic Bivariate Techniques breaks the language of the R software down into manageable chunks in order to help students learn how to use it. R is a powerful, flexible, and free tool. However, the flexibility—which eventually becomes a great asset—can make the initial learning curve appear steep. This book introduces a few key aspects of the R tool. As readers become comfortable with these aspects, they develop a foundation from which to more thoroughly explore R and the packages available for it. This introduction does not explain every possible way to analyze data or perform a specific type of analysis. Rather, it focuses on the analyses that are traditionally included in an undergraduate statistics course and provides one or two ways to run these analyses in R. Datasets and scripts to run the examples are provided on an accompanying website. The book has been designed to be an R companion to Warner′s Applied Statistics I, Third Edition, and includes end-of-chapter instructions for replicating the examples from that book in R. However, this text can also be used as a stand-alone R guide, without reference to the Warner text.



An R Companion For Applied Statistics Ii


An R Companion For Applied Statistics Ii
DOWNLOAD
Author : Danney Rasco
language : en
Publisher: SAGE Publications
Release Date : 2020-06-26

An R Companion For Applied Statistics Ii written by Danney Rasco and has been published by SAGE Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-26 with Social Science categories.


An R Companion for Applied Statistics II: Multivariable and Multivariate Techniques breaks the language of the R software down into manageable chunks in order to help students learn how to use R to analyze multivariate data. The book focuses on the statistics generally covered in an intermediate or multivariate statistics course and provides one or two ways to run each analysis in R. The book has been designed to be an R companion to Rebecca M. Warner′s Applied Statistics II: Third Edition, and includes end-of-chapter instructions for replicating the examples from that book in R. However, this text can also be used as a stand-alone R guide for a multivariate statistics course, without reference to the Warner text. Datasets and scripts to run the examples are provided on an accompanying website.



R Companion To Elementary Applied Statistics


R Companion To Elementary Applied Statistics
DOWNLOAD
Author : Christopher Hay-Jahans
language : en
Publisher: CRC Press
Release Date : 2019-01-02

R Companion To Elementary Applied Statistics written by Christopher Hay-Jahans and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-02 with Mathematics categories.


The R Companion to Elementary Applied Statistics includes traditional applications covered in elementary statistics courses as well as some additional methods that address questions that might arise during or after the application of commonly used methods. Beginning with basic tasks and computations with R, readers are then guided through ways to bring data into R, manipulate the data as needed, perform common statistical computations and elementary exploratory data analysis tasks, prepare customized graphics, and take advantage of R for a wide range of methods that find use in many elementary applications of statistics. Features: Requires no familiarity with R or programming to begin using this book. Can be used as a resource for a project-based elementary applied statistics course, or for researchers and professionals who wish to delve more deeply into R. Contains an extensive array of examples that illustrate ideas on various ways to use pre-packaged routines, as well as on developing individualized code. Presents quite a few methods that may be considered non-traditional, or advanced. Includes accompanying carefully documented script files that contain code for all examples presented, and more. R is a powerful and free product that is gaining popularity across the scientific community in both the professional and academic arenas. Statistical methods discussed in this book are used to introduce the fundamentals of using R functions and provide ideas for developing further skills in writing R code. These ideas are illustrated through an extensive collection of examples. About the Author: Christopher Hay-Jahans received his Doctor of Arts in mathematics from Idaho State University in 1999. After spending three years at University of South Dakota, he moved to Juneau, Alaska, in 2002 where he has taught a wide range of undergraduate courses at University of Alaska Southeast.



Applied Statistics I


Applied Statistics I
DOWNLOAD
Author : Rebecca M. Warner
language : en
Publisher: SAGE Publications
Release Date : 2020-01-14

Applied Statistics I written by Rebecca M. Warner and has been published by SAGE Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-14 with Social Science categories.


Rebecca M. Warner’s bestselling Applied Statistics: From Bivariate Through Multivariate Techniques has been split into two volumes for ease of use over a two-course sequence. Applied Statistics I: Basic Bivariate Techniques, Third Edition is an introductory statistics text based on chapters from the first half of the original book. The author′s contemporary approach reflects current thinking in the field, with its coverage of the "new statistics" and reproducibility in research. Her in-depth presentation of introductory statistics follows a consistent chapter format, includes some simple hand-calculations along with detailed instructions for SPSS, and helps students understand statistics in the context of real-world research through interesting examples. Datasets are provided on an accompanying website. Bundle and Save Applied Statistics I + Applied Statistics II: Basic Bivariate Techniques, Third Edition Bundle Volume I and II ISBN: 978-1-0718-1337-9 An R Companion for Applied Statistics I: Basic Bivariate Techniques + Applied Statistics I Bundle ISBN: 978-1-0718-1325-6



Statistical Modelling Of Occupant Behaviour


Statistical Modelling Of Occupant Behaviour
DOWNLOAD
Author : Jan Kloppenborg Møller
language : en
Publisher: CRC Press
Release Date : 2024-01-26

Statistical Modelling Of Occupant Behaviour written by Jan Kloppenborg Møller and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-01-26 with Science categories.


Do you have data on occupant behaviour, indoor environment or energy use in buildings? Are you interested in statistical analysis and modelling? Do you have a specific (research) question and dataset and would like to know how to answer the question with the data available? Statistical Modelling of Occupant Behaviour covers a range of statistical methods and models used for modelling energy- and comfort-related occupant behaviour in buildings. It is a classical textbook on statistics, including many practical examples related to occupant behaviour that are either taken from real research problems or adapted from such. The main focus is traditional statistical techniques based on the likelihood principle that can be applied to occupant behaviour modelling, including: General, generalised linear and survival models Mixed effect and hierarchical models Linear time series and Markov models Linear state space and hidden Markov models Illustration of all methods using occupant behaviour examples implemented in R The built environment affects occupants who live and work in it, and occupants affect the built environment by adapting it to their needs – for example, by adapting their indoor environments by interacting with building components and systems. These adaptive behaviours account for great uncertainty in the prediction of building energy use and indoor environmental conditions. Occupant behaviour is complex and multi-disciplinary but can be successfully modelled using statistical approaches. Statistical Modelling of Occupant Behaviour is written for researchers and advanced practitioners who work with real-world applications and modelling of occupant data. It describes the kinds of statistical models that may be used in various occupant behaviour modelling research. It gives a theoretical overview of these methods and then applies them to the study of occupant behaviour using readily replaceable examples in the R environment that are based on actual and experimental data.



Learn R For Applied Statistics


Learn R For Applied Statistics
DOWNLOAD
Author : Eric Goh Ming Hui
language : en
Publisher: Apress
Release Date : 2018-11-30

Learn R For Applied Statistics written by Eric Goh Ming Hui and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-30 with Computers categories.


Gain the R programming language fundamentals for doing the applied statistics useful for data exploration and analysis in data science and data mining. This book covers topics ranging from R syntax basics, descriptive statistics, and data visualizations to inferential statistics and regressions. After learning R’s syntax, you will work through data visualizations such as histograms and boxplot charting, descriptive statistics, and inferential statistics such as t-test, chi-square test, ANOVA, non-parametric test, and linear regressions. Learn R for Applied Statistics is a timely skills-migration book that equips you with the R programming fundamentals and introduces you to applied statistics for data explorations. What You Will Learn Discover R, statistics, data science, data mining, and big data Master the fundamentals of R programming, including variables and arithmetic, vectors, lists, data frames, conditional statements, loops, and functions Work with descriptive statistics Create data visualizations, including bar charts, line charts, scatter plots, boxplots, histograms, and scatterplots Use inferential statistics including t-tests, chi-square tests, ANOVA, non-parametric tests, linear regressions, and multiple linear regressions Who This Book Is For Those who are interested in data science, in particular data exploration using applied statistics, and the use of R programming for data visualizations.



Linear Regression Models


Linear Regression Models
DOWNLOAD
Author : John P. Hoffmann
language : en
Publisher: CRC Press
Release Date : 2021-09-09

Linear Regression Models written by John P. Hoffmann and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-09 with Mathematics categories.


Research in social and behavioral sciences has benefited from linear regression models (LRMs) for decades to identify and understand the associations among a set of explanatory variables and an outcome variable. Linear Regression Models: Applications in R provides you with a comprehensive treatment of these models and indispensable guidance about how to estimate them using the R software environment. After furnishing some background material, the author explains how to estimate simple and multiple LRMs in R, including how to interpret their coefficients and understand their assumptions. Several chapters thoroughly describe these assumptions and explain how to determine whether they are satisfied and how to modify the regression model if they are not. The book also includes chapters on specifying the correct model, adjusting for measurement error, understanding the effects of influential observations, and using the model with multilevel data. The concluding chapter presents an alternative model—logistic regression—designed for binary or two-category outcome variables. The book includes appendices that discuss data management and missing data and provides simulations in R to test model assumptions. Features Furnishes a thorough introduction and detailed information about the linear regression model, including how to understand and interpret its results, test assumptions, and adapt the model when assumptions are not satisfied. Uses numerous graphs in R to illustrate the model’s results, assumptions, and other features. Does not assume a background in calculus or linear algebra, rather, an introductory statistics course and familiarity with elementary algebra are sufficient. Provides many examples using real-world datasets relevant to various academic disciplines. Fully integrates the R software environment in its numerous examples. The book is aimed primarily at advanced undergraduate and graduate students in social, behavioral, health sciences, and related disciplines, taking a first course in linear regression. It could also be used for self-study and would make an excellent reference for any researcher in these fields. The R code and detailed examples provided throughout the book equip the reader with an excellent set of tools for conducting research on numerous social and behavioral phenomena. John P. Hoffmann is a professor of sociology at Brigham Young University where he teaches research methods and applied statistics courses and conducts research on substance use and criminal behavior.



An R Companion To Applied Regression


An R Companion To Applied Regression
DOWNLOAD
Author : John Fox
language : en
Publisher: SAGE Publications
Release Date : 2018-09-27

An R Companion To Applied Regression written by John Fox and has been published by SAGE Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-27 with Social Science categories.


An R Companion to Applied Regression is a broad introduction to the R statistical computing environment in the context of applied regression analysis. John Fox and Sanford Weisberg provide a step-by-step guide to using the free statistical software R, an emphasis on integrating statistical computing in R with the practice of data analysis, coverage of generalized linear models, and substantial web-based support materials. The Third Edition has been reorganized and includes a new chapter on mixed-effects models, new and updated data sets, and a de-emphasis on statistical programming, while retaining a general introduction to basic R programming. The authors have substantially updated both the car and effects packages for R for this edition, introducing additional capabilities and making the software more consistent and easier to use. They also advocate an everyday data-analysis workflow that encourages reproducible research. To this end, they provide coverage of RStudio, an interactive development environment for R that allows readers to organize and document their work in a simple and intuitive fashion, and then easily share their results with others. Also included is coverage of R Markdown, showing how to create documents that mix R commands with explanatory text. "An R Companion to Applied Regression continues to provide the most comprehensive and user-friendly guide to estimating, interpreting, and presenting results from regression models in R." –Christopher Hare, University of California, Davis



The Energy Of Data And Distance Correlation


The Energy Of Data And Distance Correlation
DOWNLOAD
Author : Gábor J. Székely
language : en
Publisher: CRC Press
Release Date : 2023-02-15

The Energy Of Data And Distance Correlation written by Gábor J. Székely and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-02-15 with Mathematics categories.


Energy distance is a statistical distance between the distributions of random vectors, which characterizes equality of distributions. The name energy derives from Newton's gravitational potential energy, and there is an elegant relation to the notion of potential energy between statistical observations. Energy statistics are functions of distances between statistical observations in metric spaces. The authors hope this book will spark the interest of most statisticians who so far have not explored E-statistics and would like to apply these new methods using R. The Energy of Data and Distance Correlation is intended for teachers and students looking for dedicated material on energy statistics, but can serve as a supplement to a wide range of courses and areas, such as Monte Carlo methods, U-statistics or V-statistics, measures of multivariate dependence, goodness-of-fit tests, nonparametric methods and distance based methods. •E-statistics provides powerful methods to deal with problems in multivariate inference and analysis. •Methods are implemented in R, and readers can immediately apply them using the freely available energy package for R. •The proposed book will provide an overview of the existing state-of-the-art in development of energy statistics and an overview of applications. •Background and literature review is valuable for anyone considering further research or application in energy statistics.