[PDF] Linear Regression Models - eBooks Review

Linear Regression Models


Linear Regression Models
DOWNLOAD

Download Linear Regression Models PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Linear Regression Models book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Linear Models In Statistics


Linear Models In Statistics
DOWNLOAD
Author : Alvin C. Rencher
language : en
Publisher: John Wiley & Sons
Release Date : 2008-01-07

Linear Models In Statistics written by Alvin C. Rencher and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-01-07 with Mathematics categories.


The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.



Applied Linear Statistical Models


Applied Linear Statistical Models
DOWNLOAD
Author : Michael H. Kutner
language : en
Publisher: McGraw-Hill Education
Release Date : 2005

Applied Linear Statistical Models written by Michael H. Kutner and has been published by McGraw-Hill Education this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005 with Analysis of variance categories.


Applied Linear Statistical Models 5e is the long established leading authoritative text and reference on statistical modeling. For students in most any discipline where statistical analysis or interpretation is used, ALSM serves as the standard work. The text includes brief introductory and review material, and then proceeds through regression and modeling for the first half, and through ANOVA and Experimental Design in the second half. All topics are presented in a precise and clear style supported with solved examples, numbered formulae, graphic illustrations, and "Notes" to provide depth and statistical accuracy and precision. Applications used within the text and the hallmark problems, exercises, and projects are drawn from virtually all disciplines and fields providing motivation for students in virtually any college. The Fifth edition provides an increased use of computing and graphical analysis throughout, without sacrificing concepts or rigor. In general, the 5e uses larger data sets in examples and exercises, and where methods can be automated within software without loss of understanding, it is so done.



Linear Regression Models


Linear Regression Models
DOWNLOAD
Author : John P. Hoffmann
language : en
Publisher: CRC Press
Release Date : 2021-09-12

Linear Regression Models written by John P. Hoffmann and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-12 with Mathematics categories.


Research in social and behavioral sciences has benefited from linear regression models (LRMs) for decades to identify and understand the associations among a set of explanatory variables and an outcome variable. Linear Regression Models: Applications in R provides you with a comprehensive treatment of these models and indispensable guidance about how to estimate them using the R software environment. After furnishing some background material, the author explains how to estimate simple and multiple LRMs in R, including how to interpret their coefficients and understand their assumptions. Several chapters thoroughly describe these assumptions and explain how to determine whether they are satisfied and how to modify the regression model if they are not. The book also includes chapters on specifying the correct model, adjusting for measurement error, understanding the effects of influential observations, and using the model with multilevel data. The concluding chapter presents an alternative model—logistic regression—designed for binary or two-category outcome variables. The book includes appendices that discuss data management and missing data and provides simulations in R to test model assumptions. Features Furnishes a thorough introduction and detailed information about the linear regression model, including how to understand and interpret its results, test assumptions, and adapt the model when assumptions are not satisfied. Uses numerous graphs in R to illustrate the model’s results, assumptions, and other features. Does not assume a background in calculus or linear algebra, rather, an introductory statistics course and familiarity with elementary algebra are sufficient. Provides many examples using real-world datasets relevant to various academic disciplines. Fully integrates the R software environment in its numerous examples. The book is aimed primarily at advanced undergraduate and graduate students in social, behavioral, health sciences, and related disciplines, taking a first course in linear regression. It could also be used for self-study and would make an excellent reference for any researcher in these fields. The R code and detailed examples provided throughout the book equip the reader with an excellent set of tools for conducting research on numerous social and behavioral phenomena. John P. Hoffmann is a professor of sociology at Brigham Young University where he teaches research methods and applied statistics courses and conducts research on substance use and criminal behavior.



Interpretable Machine Learning


Interpretable Machine Learning
DOWNLOAD
Author : Christoph Molnar
language : en
Publisher: Lulu.com
Release Date : 2020

Interpretable Machine Learning written by Christoph Molnar and has been published by Lulu.com this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Computers categories.


This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.



Linear Regression Analysis


Linear Regression Analysis
DOWNLOAD
Author : Xin Yan
language : en
Publisher: World Scientific
Release Date : 2009

Linear Regression Analysis written by Xin Yan and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009 with Mathematics categories.


"This volume presents in detail the fundamental theories of linear regression analysis and diagnosis, as well as the relevant statistical computing techniques so that readers are able to actually model the data using the techniques described in the book. This book is suitable for graduate students who are either majoring in statistics/biostatistics or using linear regression analysis substantially in their subject area." --Book Jacket.



Applied Linear Regression Models


Applied Linear Regression Models
DOWNLOAD
Author : John Neter
language : en
Publisher: Irwin Professional Publishing
Release Date : 1989

Applied Linear Regression Models written by John Neter and has been published by Irwin Professional Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 1989 with Mathematics categories.


Applied Linear Regression Models was listed in the newsletter of the Decision Sciences Institute as a classic in its field and a text that should be on every member's shelf. The third edition continues this tradition. It is a successful blend of theory and application. The authors have taken an applied approach, and emphasize understanding concepts; this text demonstrates their approach trough worked-out examples. Sufficient theory is provided so that applications of regression analysis can be carried out with understanding. John Neter is past president of the Decision Science Institute, and Michael Kutner is a top statistician in the health and life sciences area. Applied Linear Regression Models should be sold into the one-term course that focuses on regression models and applications. This is likely to be required for undergraduate and graduate students majoring in allied health, business, economics, and life sciences.



Linear Regression


Linear Regression
DOWNLOAD
Author : David J. Olive
language : en
Publisher: Springer
Release Date : 2017-04-18

Linear Regression written by David J. Olive and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-04-18 with Mathematics categories.


This text covers both multiple linear regression and some experimental design models. The text uses the response plot to visualize the model and to detect outliers, does not assume that the error distribution has a known parametric distribution, develops prediction intervals that work when the error distribution is unknown, suggests bootstrap hypothesis tests that may be useful for inference after variable selection, and develops prediction regions and large sample theory for the multivariate linear regression model that has m response variables. A relationship between multivariate prediction regions and confidence regions provides a simple way to bootstrap confidence regions. These confidence regions often provide a practical method for testing hypotheses. There is also a chapter on generalized linear models and generalized additive models. There are many R functions to produce response and residual plots, to simulate prediction intervals and hypothesis tests, to detect outliers, and to choose response transformations for multiple linear regression or experimental design models. This text is for graduates and undergraduates with a strong mathematical background. The prerequisites for this text are linear algebra and a calculus based course in statistics.



Regression Analysis And Linear Models


Regression Analysis And Linear Models
DOWNLOAD
Author : Richard B. Darlington
language : en
Publisher: Guilford Publications
Release Date : 2016-09-27

Regression Analysis And Linear Models written by Richard B. Darlington and has been published by Guilford Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-09-27 with Social Science categories.


Ephasizing conceptual understanding over mathematics, this user-friendly text introduces linear regression analysis to students and researchers across the social, behavioral, consumer, and health sciences. Coverage includes model construction and estimation, quantification and measurement of multivariate and partial associations, statistical control, group comparisons, moderation analysis, mediation and path analysis, and regression diagnostics, among other important topics. Engaging worked-through examples demonstrate each technique, accompanied by helpful advice and cautions. The use of SPSS, SAS, and STATA is emphasized, with an appendix on regression analysis using R. The companion website (www.afhayes.com) provides datasets for the book's examples as well as the RLM macro for SPSS and SAS. Pedagogical Features: *Chapters include SPSS, SAS, or STATA code pertinent to the analyses described, with each distinctively formatted for easy identification. *An appendix documents the RLM macro, which facilitates computations for estimating and probing interactions, dominance analysis, heteroscedasticity-consistent standard errors, and linear spline regression, among other analyses. *Students are guided to practice what they learn in each chapter using datasets provided online. *Addresses topics not usually covered, such as ways to measure a variable?s importance, coding systems for representing categorical variables, causation, and myths about testing interaction.



Introduction To Linear Regression Analysis


Introduction To Linear Regression Analysis
DOWNLOAD
Author : Douglas C. Montgomery
language : en
Publisher: John Wiley & Sons
Release Date : 2015-06-29

Introduction To Linear Regression Analysis written by Douglas C. Montgomery and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-06-29 with Mathematics categories.


Praise for the Fourth Edition "As with previous editions, the authors have produced a leading textbook on regression." —Journal of the American Statistical Association A comprehensive and up-to-date introduction to the fundamentals of regression analysis Introduction to Linear Regression Analysis, Fifth Edition continues to present both the conventional and less common uses of linear regression in today’s cutting-edge scientific research. The authors blend both theory and application to equip readers with an understanding of the basic principles needed to apply regression model-building techniques in various fields of study, including engineering, management, and the health sciences. Following a general introduction to regression modeling, including typical applications, a host of technical tools are outlined such as basic inference procedures, introductory aspects of model adequacy checking, and polynomial regression models and their variations. The book then discusses how transformations and weighted least squares can be used to resolve problems of model inadequacy and also how to deal with influential observations. The Fifth Edition features numerous newly added topics, including: A chapter on regression analysis of time series data that presents the Durbin-Watson test and other techniques for detecting autocorrelation as well as parameter estimation in time series regression models Regression models with random effects in addition to a discussion on subsampling and the importance of the mixed model Tests on individual regression coefficients and subsets of coefficients Examples of current uses of simple linear regression models and the use of multiple regression models for understanding patient satisfaction data. In addition to Minitab, SAS, and S-PLUS, the authors have incorporated JMP and the freely available R software to illustrate the discussed techniques and procedures in this new edition. Numerous exercises have been added throughout, allowing readers to test their understanding of the material. Introduction to Linear Regression Analysis, Fifth Edition is an excellent book for statistics and engineering courses on regression at the upper-undergraduate and graduate levels. The book also serves as a valuable, robust resource for professionals in the fields of engineering, life and biological sciences, and the social sciences.



Linear Regression Analysis Theory And Computing


Linear Regression Analysis Theory And Computing
DOWNLOAD
Author : Xin Yan
language : en
Publisher: World Scientific
Release Date : 2009-06-05

Linear Regression Analysis Theory And Computing written by Xin Yan and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-06-05 with Mathematics categories.


This volume presents in detail the fundamental theories of linear regression analysis and diagnosis, as well as the relevant statistical computing techniques so that readers are able to actually model the data using the methods and techniques described in the book. It covers the fundamental theories in linear regression analysis and is extremely useful for future research in this area. The examples of regression analysis using the Statistical Application System (SAS) are also included. This book is suitable for graduate students who are either majoring in statistics/biostatistics or using linear regression analysis substantially in their subject fields.