Applied Text Mining

DOWNLOAD
Download Applied Text Mining PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Applied Text Mining book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Applied Text Mining
DOWNLOAD
Author : Usman Qamar
language : en
Publisher: Springer Nature
Release Date : 2024-06-10
Applied Text Mining written by Usman Qamar and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-06-10 with Computers categories.
This textbook covers the concepts, theories, and implementations of text mining and natural language processing (NLP). It covers both the theory and the practical implementation, and every concept is explained with simple and easy-to-understand examples. It consists of three parts. In Part 1 which consists of three chapters details about basic concepts and applications of text mining are provided, including eg sentiment analysis and opinion mining. It builds a strong foundation for the reader in order to understand the remaining parts. In the five chapters of Part 2, all the core concepts of text analytics like feature engineering, text classification, text clustering, text summarization, topic mapping, and text visualization are covered. Finally, in Part 3 there are three chapters covering deep-learning-based text mining, which is the dominating method applied to practically all text mining tasks nowadays. Various deep learning approaches to text mining are covered, includingmodels for processing and parsing text, for lexical analysis, and for machine translation. All three parts include large parts of Python code that shows the implementation of the described concepts and approaches. The textbook was specifically written to enable the teaching of both basic and advanced concepts from one single book. The implementation of every text mining task is carefully explained, based Python as the programming language and Spacy and NLTK as Natural Language Processing libraries. The book is suitable for both undergraduate and graduate students in computer science and engineering.
Applied Text Analysis With Python
DOWNLOAD
Author : Benjamin Bengfort
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2018-06-11
Applied Text Analysis With Python written by Benjamin Bengfort and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-06-11 with Computers categories.
From news and speeches to informal chatter on social media, natural language is one of the richest and most underutilized sources of data. Not only does it come in a constant stream, always changing and adapting in context; it also contains information that is not conveyed by traditional data sources. The key to unlocking natural language is through the creative application of text analytics. This practical book presents a data scientist’s approach to building language-aware products with applied machine learning. You’ll learn robust, repeatable, and scalable techniques for text analysis with Python, including contextual and linguistic feature engineering, vectorization, classification, topic modeling, entity resolution, graph analysis, and visual steering. By the end of the book, you’ll be equipped with practical methods to solve any number of complex real-world problems. Preprocess and vectorize text into high-dimensional feature representations Perform document classification and topic modeling Steer the model selection process with visual diagnostics Extract key phrases, named entities, and graph structures to reason about data in text Build a dialog framework to enable chatbots and language-driven interaction Use Spark to scale processing power and neural networks to scale model complexity
DOWNLOAD
Author :
language : en
Publisher:
Release Date :
written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on with categories.
Blueprints For Text Analytics Using Python
DOWNLOAD
Author : Jens Albrecht
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2020-12-04
Blueprints For Text Analytics Using Python written by Jens Albrecht and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-04 with Computers categories.
Turning text into valuable information is essential for businesses looking to gain a competitive advantage. With recent improvements in natural language processing (NLP), users now have many options for solving complex challenges. But it's not always clear which NLP tools or libraries would work for a business's needs, or which techniques you should use and in what order. This practical book provides data scientists and developers with blueprints for best practice solutions to common tasks in text analytics and natural language processing. Authors Jens Albrecht, Sidharth Ramachandran, and Christian Winkler provide real-world case studies and detailed code examples in Python to help you get started quickly. Extract data from APIs and web pages Prepare textual data for statistical analysis and machine learning Use machine learning for classification, topic modeling, and summarization Explain AI models and classification results Explore and visualize semantic similarities with word embeddings Identify customer sentiment in product reviews Create a knowledge graph based on named entities and their relations
Text Mining
DOWNLOAD
Author : Sholom M. Weiss
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-01-08
Text Mining written by Sholom M. Weiss and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-01-08 with Computers categories.
Data mining is a mature technology. The prediction problem, looking for predictive patterns in data, has been widely studied. Strong me- ods are available to the practitioner. These methods process structured numerical information, where uniform measurements are taken over a sample of data. Text is often described as unstructured information. So, it would seem, text and numerical data are different, requiring different methods. Or are they? In our view, a prediction problem can be solved by the same methods, whether the data are structured - merical measurements or unstructured text. Text and documents can be transformed into measured values, such as the presence or absence of words, and the same methods that have proven successful for pred- tive data mining can be applied to text. Yet, there are key differences. Evaluation techniques must be adapted to the chronological order of publication and to alternative measures of error. Because the data are documents, more specialized analytical methods may be preferred for text. Moreover, the methods must be modi?ed to accommodate very high dimensions: tens of thousands of words and documents. Still, the central themes are similar.
Clinical Text Mining
DOWNLOAD
Author : Hercules Dalianis
language : en
Publisher: Springer
Release Date : 2018-05-14
Clinical Text Mining written by Hercules Dalianis and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-14 with Computers categories.
This open access book describes the results of natural language processing and machine learning methods applied to clinical text from electronic patient records. It is divided into twelve chapters. Chapters 1-4 discuss the history and background of the original paper-based patient records, their purpose, and how they are written and structured. These initial chapters do not require any technical or medical background knowledge. The remaining eight chapters are more technical in nature and describe various medical classifications and terminologies such as ICD diagnosis codes, SNOMED CT, MeSH, UMLS, and ATC. Chapters 5-10 cover basic tools for natural language processing and information retrieval, and how to apply them to clinical text. The difference between rule-based and machine learning-based methods, as well as between supervised and unsupervised machine learning methods, are also explained. Next, ethical concerns regarding the use of sensitive patient records for research purposes are discussed, including methods for de-identifying electronic patient records and safely storing patient records. The book’s closing chapters present a number of applications in clinical text mining and summarise the lessons learned from the previous chapters. The book provides a comprehensive overview of technical issues arising in clinical text mining, and offers a valuable guide for advanced students in health informatics, computational linguistics, and information retrieval, and for researchers entering these fields.
Natural Language Processing And Text Mining
DOWNLOAD
Author : Anne Kao
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-03-06
Natural Language Processing And Text Mining written by Anne Kao and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-03-06 with Computers categories.
The topic this book addresses originated from a panel discussion at the 2004 ACM SIGKDD (Special Interest Group on Knowledge Discovery and Data Mining) Conference held in Seattle, Washington, USA. We the editors or- nized the panel to promote discussion on how text mining and natural l- guageprocessing,tworelatedtopicsoriginatingfromverydi?erentdisciplines, can best interact with each other, and bene?t from each other’s strengths. It attracted a great deal of interest and was attended by 200 people from all over the world. We then guest-edited a special issue of ACM SIGKDD Exp- rations on the same topic, with a number of very interesting papers. At the same time, Springer believed this to be a topic of wide interest and expressed an interest in seeing a book published. After a year of work, we have put - gether 11 papers from international researchers on a range of techniques and applications. We hope this book includes papers readers do not normally ?nd in c- ference proceedings, which tend to focus more on theoretical or algorithmic breakthroughs but are often only tried on standard test data. We would like to provide readers with a wider range of applications, give some examples of the practical application of algorithms on real-world problems, as well as share a number of useful techniques.
Text Mining And Its Applications To Intelligence Crm And Knowledge Management
DOWNLOAD
Author : A. Zanasi
language : en
Publisher: WIT Press
Release Date : 2007-09-30
Text Mining And Its Applications To Intelligence Crm And Knowledge Management written by A. Zanasi and has been published by WIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-09-30 with Computers categories.
Organizations generate and collect large volumes of textual data. Unfortunately, many companies are unable to capitalize fully on the value of this data because information implicit within it is not easy to discern. Primarily intended for business analysts and statisticians across multiple industries, this book provides an introduction to the types of problems encountered and current available text mining solutions.
Mining Text Data
DOWNLOAD
Author : Charu C. Aggarwal
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-02-03
Mining Text Data written by Charu C. Aggarwal and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-02-03 with Computers categories.
Text mining applications have experienced tremendous advances because of web 2.0 and social networking applications. Recent advances in hardware and software technology have lead to a number of unique scenarios where text mining algorithms are learned. Mining Text Data introduces an important niche in the text analytics field, and is an edited volume contributed by leading international researchers and practitioners focused on social networks & data mining. This book contains a wide swath in topics across social networks & data mining. Each chapter contains a comprehensive survey including the key research content on the topic, and the future directions of research in the field. There is a special focus on Text Embedded with Heterogeneous and Multimedia Data which makes the mining process much more challenging. A number of methods have been designed such as transfer learning and cross-lingual mining for such cases. Mining Text Data simplifies the content, so that advanced-level students, practitioners and researchers in computer science can benefit from this book. Academic and corporate libraries, as well as ACM, IEEE, and Management Science focused on information security, electronic commerce, databases, data mining, machine learning, and statistics are the primary buyers for this reference book.
The Text Mining Handbook
DOWNLOAD
Author : Ronen Feldman
language : en
Publisher: Cambridge University Press
Release Date : 2006-12-11
The Text Mining Handbook written by Ronen Feldman and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-12-11 with Computers categories.
Text mining is a new and exciting area of computer science research that tries to solve the crisis of information overload by combining techniques from data mining, machine learning, natural language processing, information retrieval, and knowledge management. Similarly, link detection – a rapidly evolving approach to the analysis of text that shares and builds upon many of the key elements of text mining – also provides new tools for people to better leverage their burgeoning textual data resources. The Text Mining Handbook presents a comprehensive discussion of the state-of-the-art in text mining and link detection. In addition to providing an in-depth examination of core text mining and link detection algorithms and operations, the book examines advanced pre-processing techniques, knowledge representation considerations, and visualization approaches. Finally, the book explores current real-world, mission-critical applications of text mining and link detection in such varied fields as M&A business intelligence, genomics research and counter-terrorism activities.