[PDF] Applied Univariate Bivariate And Multivariate Statistics Using Python - eBooks Review

Applied Univariate Bivariate And Multivariate Statistics Using Python


Applied Univariate Bivariate And Multivariate Statistics Using Python
DOWNLOAD

Download Applied Univariate Bivariate And Multivariate Statistics Using Python PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Applied Univariate Bivariate And Multivariate Statistics Using Python book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Applied Univariate Bivariate And Multivariate Statistics Using Python


Applied Univariate Bivariate And Multivariate Statistics Using Python
DOWNLOAD
Author : Daniel J. Denis
language : en
Publisher: John Wiley & Sons
Release Date : 2021-05-11

Applied Univariate Bivariate And Multivariate Statistics Using Python written by Daniel J. Denis and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-05-11 with Mathematics categories.


Applied Univariate, Bivariate, and Multivariate Statistics Using Python A practical, “how-to” reference for anyone performing essential statistical analyses and data management tasks in Python Applied Univariate, Bivariate, and Multivariate Statistics Using Python delivers a comprehensive introduction to a wide range of statistical methods performed using Python in a single, one-stop reference. The book contains user-friendly guidance and instructions on using Python to run a variety of statistical procedures without getting bogged down in unnecessary theory. Throughout, the author emphasizes a set of computational tools used in the discovery of empirical patterns, as well as several popular statistical analyses and data management tasks that can be immediately applied. Most of the datasets used in the book are small enough to be easily entered into Python manually, though they can also be downloaded for free from www.datapsyc.com. Only minimal knowledge of statistics is assumed, making the book perfect for those seeking an easily accessible toolkit for statistical analysis with Python. Applied Univariate, Bivariate, and Multivariate Statistics Using Python represents the fastest way to learn how to analyze data with Python. Readers will also benefit from the inclusion of: A review of essential statistical principles, including types of data, measurement, significance tests, significance levels, and type I and type II errors An introduction to Python, exploring how to communicate with Python A treatment of exploratory data analysis, basic statistics and visual displays, including frequencies and descriptives, q-q plots, box-and-whisker plots, and data management An introduction to topics such as ANOVA, MANOVA and discriminant analysis, regression, principal components analysis, factor analysis, cluster analysis, among others, exploring the nature of what these techniques can vs. cannot do on a methodological level Perfect for undergraduate and graduate students in the social, behavioral, and natural sciences, Applied Univariate, Bivariate, and Multivariate Statistics Using Python will also earn a place in the libraries of researchers and data analysts seeking a quick go-to resource for univariate, bivariate, and multivariate analysis in Python.



Applied Univariate Bivariate And Multivariate Statistics Using Python


Applied Univariate Bivariate And Multivariate Statistics Using Python
DOWNLOAD
Author : Daniel J. Denis
language : en
Publisher: John Wiley & Sons
Release Date : 2021-04-30

Applied Univariate Bivariate And Multivariate Statistics Using Python written by Daniel J. Denis and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-30 with Mathematics categories.


Applied Univariate, Bivariate, and Multivariate Statistics Using Python A practical, “how-to” reference for anyone performing essential statistical analyses and data management tasks in Python Applied Univariate, Bivariate, and Multivariate Statistics Using Python delivers a comprehensive introduction to a wide range of statistical methods performed using Python in a single, one-stop reference. The book contains user-friendly guidance and instructions on using Python to run a variety of statistical procedures without getting bogged down in unnecessary theory. Throughout, the author emphasizes a set of computational tools used in the discovery of empirical patterns, as well as several popular statistical analyses and data management tasks that can be immediately applied. Most of the datasets used in the book are small enough to be easily entered into Python manually, though they can also be downloaded for free from www.datapsyc.com. Only minimal knowledge of statistics is assumed, making the book perfect for those seeking an easily accessible toolkit for statistical analysis with Python. Applied Univariate, Bivariate, and Multivariate Statistics Using Python represents the fastest way to learn how to analyze data with Python. Readers will also benefit from the inclusion of: A review of essential statistical principles, including types of data, measurement, significance tests, significance levels, and type I and type II errors An introduction to Python, exploring how to communicate with Python A treatment of exploratory data analysis, basic statistics and visual displays, including frequencies and descriptives, q-q plots, box-and-whisker plots, and data management An introduction to topics such as ANOVA, MANOVA and discriminant analysis, regression, principal components analysis, factor analysis, cluster analysis, among others, exploring the nature of what these techniques can vs. cannot do on a methodological level Perfect for undergraduate and graduate students in the social, behavioral, and natural sciences, Applied Univariate, Bivariate, and Multivariate Statistics Using Python will also earn a place in the libraries of researchers and data analysts seeking a quick go-to resource for univariate, bivariate, and multivariate analysis in Python.



Univariate Bivariate And Multivariate Statistics Using R


Univariate Bivariate And Multivariate Statistics Using R
DOWNLOAD
Author : Daniel J. Denis
language : en
Publisher: John Wiley & Sons
Release Date : 2020-04-16

Univariate Bivariate And Multivariate Statistics Using R written by Daniel J. Denis and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-16 with Mathematics categories.


A practical source for performing essential statistical analyses and data management tasks in R Univariate, Bivariate, and Multivariate Statistics Using R offers a practical and very user-friendly introduction to the use of R software that covers a range of statistical methods featured in data analysis and data science. The author— a noted expert in quantitative teaching —has written a quick go-to reference for performing essential statistical analyses and data management tasks in R. Requiring only minimal prior knowledge, the book introduces concepts needed for an immediate yet clear understanding of statistical concepts essential to interpreting software output. The author explores univariate, bivariate, and multivariate statistical methods, as well as select nonparametric tests. Altogether a hands-on manual on the applied statistics and essential R computing capabilities needed to write theses, dissertations, as well as research publications. The book is comprehensive in its coverage of univariate through to multivariate procedures, while serving as a friendly and gentle introduction to R software for the newcomer. This important resource: Offers an introductory, concise guide to the computational tools that are useful for making sense out of data using R statistical software Provides a resource for students and professionals in the social, behavioral, and natural sciences Puts the emphasis on the computational tools used in the discovery of empirical patterns Features a variety of popular statistical analyses and data management tasks that can be immediately and quickly applied as needed to research projects Shows how to apply statistical analysis using R to data sets in order to get started quickly performing essential tasks in data analysis and data science Written for students, professionals, and researchers primarily in the social, behavioral, and natural sciences, Univariate, Bivariate, and Multivariate Statistics Using R offers an easy-to-use guide for performing data analysis fast, with an emphasis on drawing conclusions from empirical observations. The book can also serve as a primary or secondary textbook for courses in data analysis or data science, or others in which quantitative methods are featured.



An Introduction To Data Science With Python


An Introduction To Data Science With Python
DOWNLOAD
Author : Jeffrey S. Saltz
language : en
Publisher: SAGE Publications
Release Date : 2024-05-29

An Introduction To Data Science With Python written by Jeffrey S. Saltz and has been published by SAGE Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-05-29 with Computers categories.


An Introduction to Data Science with Python by Jeffrey S. Saltz and Jeffery M. Stanton provides readers who are new to Python and data science with a step-by-step walkthrough of the tools and techniques used to analyze data and generate predictive models. After introducing the basic concepts of data science, the book builds on these foundations to explain data science techniques using Python-based Jupyter Notebooks. The techniques include making tables and data frames, computing statistics, managing data, creating data visualizations, and building machine learning models. Each chapter breaks down the process into simple steps and components so students with no more than a high school algebra background will still find the concepts and code intelligible. Explanations are reinforced with linked practice questions throughout to check reader understanding. The book also covers advanced topics such as neural networks and deep learning, the basis of many recent and startling advances in machine learning and artificial intelligence. With their trademark humor and clear explanations, Saltz and Stanton provide a gentle introduction to this powerful data science tool. Included with this title: LMS Cartridge: Import this title’s instructor resources into your school’s learning management system (LMS) and save time. Don′t use an LMS? You can still access all of the same online resources for this title via the password-protected Instructor Resource Site.



Computer Science In Sport


Computer Science In Sport
DOWNLOAD
Author : Daniel Memmert
language : en
Publisher: Springer Nature
Release Date : 2024-03-05

Computer Science In Sport written by Daniel Memmert and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-03-05 with Sports & Recreation categories.


In recent years, computer science in sport has grown extremely, mainly because more and more new data has become available. Computer science tools in sports, whether used for opponent preparation, competition, or scientific analysis, have become indispensable across various levels of expertise nowadays. A completely new market has emerged through the utilization of these tools in the four major fields of application: clubs and associations, business, science, and the media. This market is progressively gaining importance within university research and educational activities. This textbook aims to live up to the now broad diversity of computer science in sport by having more than 30 authors report from their special field and concisely summarise the latest findings. The book is divided into four main sections: data sets, modelling, simulation and data analysis. In addition to background information on programming languages and visualisation, the textbook is framed by history and an outlook. Students with a connection to sports science are given a comprehensive insight into computer science in sport, supported by a didactically sophisticated concept that makes it easy to convey the learning content. Numerous questions for self-testing underpin the learning effect and ensure optimal exam preparation. For advanced students, the in-depth discussion of time series data mining, artificial neural networks, convolution kernels, transfer learning and random forests offers additional value.



Statistik Komputasi Bisnis Digital


Statistik Komputasi Bisnis Digital
DOWNLOAD
Author : Sugiarto, S.Kom., M. Kom
language : id
Publisher: Thalibul Ilmi Publishing & Education
Release Date : 2024-07-05

Statistik Komputasi Bisnis Digital written by Sugiarto, S.Kom., M. Kom and has been published by Thalibul Ilmi Publishing & Education this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-07-05 with Business & Economics categories.


Dengan memanfaatkan teknologi komputasi terbaru, buku ini membawa pembaca melalui serangkaian konsep statistik yang mendasar hingga yang kompleks, yang relevan dalam konteks analisis data dan kecerdasan bisnis. Buku ini tidak hanya menjelaskan teori statistik, tetapi juga menyoroti aplikasi praktisnya dalam berbagai skenario bisnis digital, seperti analisis big data, prediksi pasar, segmentasi pelanggan, evaluasi kinerja produk, dan pengoptimalan strategi pemasaran. Pembaca akan diperkenalkan pada berbagai teknik komputasi modern yang digunakan untuk mengolah dan menganalisis data besar dengan efektif, termasuk penggunaan algoritma machine learning dan teknik visualisasi data yang canggih.



Multivariate Statistics And Machine Learning


Multivariate Statistics And Machine Learning
DOWNLOAD
Author : Daniel J Denis
language : en
Publisher: Routledge
Release Date : 2025-09-30

Multivariate Statistics And Machine Learning written by Daniel J Denis and has been published by Routledge this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-09-30 with Computers categories.


Multivariate Statistics and Machine Learning is a hands-on textbook providing an in-depth guide to multivariate statistics and select machine learning topics using R and Python software. The book offers a theoretical orientation to the concepts required to introduce or review statistical and machine learning topics, and in addition to teaching the techniques, instructs readers on how to perform, implement, and interpret code and analyses in R and Python in multivariate, data science, and machine learning domains. For readers wishing for additional theory, numerous references throughout the textbook are provided where deeper and less "hands on" works can be pursued. With its unique breadth of topics covering a wide range of modern quantitative techniques, user-friendliness and quality of expository writing, Multivariate Statistics and Machine Learning will serve as a key and unifying introductory textbook for students in the social, natural, statistical and computational sciences for years to come.



Applied Statistics From Bivariate Through Multivariate Techniques


Applied Statistics From Bivariate Through Multivariate Techniques
DOWNLOAD
Author : Rebecca M. Warner
language : en
Publisher: SAGE
Release Date : 2013

Applied Statistics From Bivariate Through Multivariate Techniques written by Rebecca M. Warner and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013 with Mathematics categories.


Rebecca M. Warner's Applied Statistics: From Bivariate Through Multivariate Techniques, Second Edition provides a clear introduction to widely used topics in bivariate and multivariate statistics, including multiple regression, discriminant analysis, MANOVA, factor analysis, and binary logistic regression. The approach is applied and does not require formal mathematics; equations are accompanied by verbal explanations. Students are asked to think about the meaning of equations. Each chapter presents a complete empirical research example to illustrate the application of a specific method. Although SPSS examples are used throughout the book, the conceptual material will be helpful for users of different programs. Each chapter has a glossary and comprehension questions.



Univariate Bivariate And Multivariate Statistics Using R


Univariate Bivariate And Multivariate Statistics Using R
DOWNLOAD
Author : Daniel J. Denis
language : en
Publisher: John Wiley & Sons
Release Date : 2020-04-14

Univariate Bivariate And Multivariate Statistics Using R written by Daniel J. Denis and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-14 with Mathematics categories.


A practical source for performing essential statistical analyses and data management tasks in R Univariate, Bivariate, and Multivariate Statistics Using R offers a practical and very user-friendly introduction to the use of R software that covers a range of statistical methods featured in data analysis and data science. The author— a noted expert in quantitative teaching —has written a quick go-to reference for performing essential statistical analyses and data management tasks in R. Requiring only minimal prior knowledge, the book introduces concepts needed for an immediate yet clear understanding of statistical concepts essential to interpreting software output. The author explores univariate, bivariate, and multivariate statistical methods, as well as select nonparametric tests. Altogether a hands-on manual on the applied statistics and essential R computing capabilities needed to write theses, dissertations, as well as research publications. The book is comprehensive in its coverage of univariate through to multivariate procedures, while serving as a friendly and gentle introduction to R software for the newcomer. This important resource: Offers an introductory, concise guide to the computational tools that are useful for making sense out of data using R statistical software Provides a resource for students and professionals in the social, behavioral, and natural sciences Puts the emphasis on the computational tools used in the discovery of empirical patterns Features a variety of popular statistical analyses and data management tasks that can be immediately and quickly applied as needed to research projects Shows how to apply statistical analysis using R to data sets in order to get started quickly performing essential tasks in data analysis and data science Written for students, professionals, and researchers primarily in the social, behavioral, and natural sciences, Univariate, Bivariate, and Multivariate Statistics Using R offers an easy-to-use guide for performing data analysis fast, with an emphasis on drawing conclusions from empirical observations. The book can also serve as a primary or secondary textbook for courses in data analysis or data science, or others in which quantitative methods are featured.



Applied Univariate Bivariate And Multivariate Statistics


Applied Univariate Bivariate And Multivariate Statistics
DOWNLOAD
Author : Daniel J. Denis
language : en
Publisher: John Wiley & Sons
Release Date : 2015-10-28

Applied Univariate Bivariate And Multivariate Statistics written by Daniel J. Denis and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-10-28 with Mathematics categories.


A clear and efficient balance between theory and application of statistical modeling techniques in the social and behavioral sciences Written as a general and accessible introduction, Applied Univariate, Bivariate, and Multivariate Statistics provides an overview of statistical modeling techniques used in fields in the social and behavioral sciences. Blending statistical theory and methodology, the book surveys both the technical and theoretical aspects of good data analysis. Featuring applied resources at various levels, the book includes statistical techniques such as t-tests and correlation as well as more advanced procedures such as MANOVA, factor analysis, and structural equation modeling. To promote a more in-depth interpretation of statistical techniques across the sciences, the book surveys some of the technical arguments underlying formulas and equations. Applied Univariate, Bivariate, and Multivariate Statistics also features Demonstrations of statistical techniques using software packages such as R and SPSS® Examples of hypothetical and real data with subsequent statistical analyses Historical and philosophical insights into many of the techniques used in modern social science A companion website that includes further instructional details, additional data sets, solutions to selected exercises, and multiple programming options An ideal textbook for courses in statistics and methodology at the upper- undergraduate and graduate-levels in psychology, political science, biology, sociology, education, economics, communications, law, and survey research, Applied Univariate, Bivariate, and Multivariate Statistics is also a useful reference for practitioners and researchers in their field of application. DANIEL J. DENIS, PhD, is Associate Professor of Quantitative Psychology at the University of Montana where he teaches courses in univariate and multivariate statistics. He has published a number of articles in peer-reviewed journals and has served as consultant to researchers and practitioners in a variety of fields.