Approximate Solutions Of Common Fixed Point Problems

DOWNLOAD
Download Approximate Solutions Of Common Fixed Point Problems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Approximate Solutions Of Common Fixed Point Problems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Approximate Solutions Of Common Fixed Point Problems
DOWNLOAD
Author : Alexander J. Zaslavski
language : en
Publisher: Springer
Release Date : 2016-06-30
Approximate Solutions Of Common Fixed Point Problems written by Alexander J. Zaslavski and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-06-30 with Mathematics categories.
This book presents results on the convergence behavior of algorithms which are known as vital tools for solving convex feasibility problems and common fixed point problems. The main goal for us in dealing with a known computational error is to find what approximate solution can be obtained and how many iterates one needs to find it. According to know results, these algorithms should converge to a solution. In this exposition, these algorithms are studied, taking into account computational errors which remain consistent in practice. In this case the convergence to a solution does not take place. We show that our algorithms generate a good approximate solution if computational errors are bounded from above by a small positive constant. Beginning with an introduction, this monograph moves on to study: · dynamic string-averaging methods for common fixed point problems in a Hilbert space · dynamic string methods for common fixed point problems in a metric space“/p> · dynamic string-averaging version of the proximal algorithm · common fixed point problems in metric spaces · common fixed point problems in the spaces with distances of the Bregman type · a proximal algorithm for finding a common zero of a family of maximal monotone operators · subgradient projections algorithms for convex feasibility problems in Hilbert spaces
Algorithms For Solving Common Fixed Point Problems
DOWNLOAD
Author : Alexander J. Zaslavski
language : en
Publisher: Springer
Release Date : 2018-05-02
Algorithms For Solving Common Fixed Point Problems written by Alexander J. Zaslavski and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-02 with Mathematics categories.
This book details approximate solutions to common fixed point problems and convex feasibility problems in the presence of perturbations. Convex feasibility problems search for a common point of a finite collection of subsets in a Hilbert space; common fixed point problems pursue a common fixed point of a finite collection of self-mappings in a Hilbert space. A variety of algorithms are considered in this book for solving both types of problems, the study of which has fueled a rapidly growing area of research. This monograph is timely and highlights the numerous applications to engineering, computed tomography, and radiation therapy planning. Totaling eight chapters, this book begins with an introduction to foundational material and moves on to examine iterative methods in metric spaces. The dynamic string-averaging methods for common fixed point problems in normed space are analyzed in Chapter 3. Dynamic string methods, for common fixed point problems in a metric space are introduced and discussed in Chapter 4. Chapter 5 is devoted to the convergence of an abstract version of the algorithm which has been called component-averaged row projections (CARP). Chapter 6 studies a proximal algorithm for finding a common zero of a family of maximal monotone operators. Chapter 7 extends the results of Chapter 6 for a dynamic string-averaging version of the proximal algorithm. In Chapters 8 subgradient projections algorithms for convex feasibility problems are examined for infinite dimensional Hilbert spaces.
Solutions Of Fixed Point Problems With Computational Errors
DOWNLOAD
Author : Alexander J. Zaslavski
language : en
Publisher: Springer Nature
Release Date : 2024-03-19
Solutions Of Fixed Point Problems With Computational Errors written by Alexander J. Zaslavski and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-03-19 with Mathematics categories.
The book is devoted to the study of approximate solutions of fixed point problems in the presence of computational errors. It begins with a study of approximate solutions of star-shaped feasibility problems in the presence of perturbations. The goal is to show the convergence of algorithms, which are known as important tools for solving convex feasibility problems and common fixed point problems.The text also presents studies of algorithms based on unions of nonexpansive maps, inconsistent convex feasibility problems, and split common fixed point problems. A number of algorithms are considered for solving convex feasibility problems and common fixed point problems. The book will be of interest for researchers and engineers working in optimization, numerical analysis, and fixed point theory. It also can be useful in preparation courses for graduate students. The main feature of the book which appeals specifically to this audience is the study of the influence of computational errorsfor several important algorithms used for nonconvex feasibility problems.
The Krasnoselskii Mann Method For Common Fixed Point Problems
DOWNLOAD
Author : Alexander J. Zaslavski
language : en
Publisher: Springer Nature
Release Date : 2025-03-24
The Krasnoselskii Mann Method For Common Fixed Point Problems written by Alexander J. Zaslavski and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-03-24 with Mathematics categories.
This book delves into the intricate world of fixed point theory, focusing on the Krasnoselskii-Mann method to tackle common fixed point problems within a finite family of quasi-nonexpansive mappings in hyperbolic metric spaces. By exploring various iterative algorithms, including the Cimmino algorithm and dynamic string-averaging methods, this volume offers a comprehensive study of convergence and approximate solutions amidst computational errors. Key concepts such as W-hyperbolic spaces, convex combinations, and set-valued inclusions are meticulously examined. The author presents a detailed analysis of iterative methods, highlighting their effectiveness in solving complex fixed-point problems. Readers will encounter critical discussions on the behavior of exact and inexact iterates, the role of computational errors, and innovative approaches like remotest set control. This book invites readers to engage with challenging questions about convergence and solution accuracy in mathematical spaces. Ideal for researchers and scholars in mathematics and related fields, this book provides valuable insights into advanced iterative methods for solving fixed-point problems. Whether you are a mathematician specializing in nonlinear analysis or an academic exploring optimization theory, this volume is an essential resource for understanding the latest developments in fixed point theory.
Optimization On Solution Sets Of Common Fixed Point Problems
DOWNLOAD
Author : Alexander J. Zaslavski
language : en
Publisher: Springer Nature
Release Date : 2021-08-09
Optimization On Solution Sets Of Common Fixed Point Problems written by Alexander J. Zaslavski and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-09 with Mathematics categories.
This book is devoted to a detailed study of the subgradient projection method and its variants for convex optimization problems over the solution sets of common fixed point problems and convex feasibility problems. These optimization problems are investigated to determine good solutions obtained by different versions of the subgradient projection algorithm in the presence of sufficiently small computational errors. The use of selected algorithms is highlighted including the Cimmino type subgradient, the iterative subgradient, and the dynamic string-averaging subgradient. All results presented are new. Optimization problems where the underlying constraints are the solution sets of other problems, frequently occur in applied mathematics. The reader should not miss the section in Chapter 1 which considers some examples arising in the real world applications. The problems discussed have an important impact in optimization theory as well. The book will be useful for researches interested in the optimization theory and its applications.
Mathematical Analysis And Applications
DOWNLOAD
Author : Michael Ruzhansky
language : en
Publisher: John Wiley & Sons
Release Date : 2018-04-11
Mathematical Analysis And Applications written by Michael Ruzhansky and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-04-11 with Mathematics categories.
An authoritative text that presents the current problems, theories, and applications of mathematical analysis research Mathematical Analysis and Applications: Selected Topics offers the theories, methods, and applications of a variety of targeted topics including: operator theory, approximation theory, fixed point theory, stability theory, minimization problems, many-body wave scattering problems, Basel problem, Corona problem, inequalities, generalized normed spaces, variations of functions and sequences, analytic generalizations of the Catalan, Fuss, and Fuss–Catalan Numbers, asymptotically developable functions, convex functions, Gaussian processes, image analysis, and spectral analysis and spectral synthesis. The authors—a noted team of international researchers in the field— highlight the basic developments for each topic presented and explore the most recent advances made in their area of study. The text is presented in such a way that enables the reader to follow subsequent studies in a burgeoning field of research. This important text: Presents a wide-range of important topics having current research importance and interdisciplinary applications such as game theory, image processing, creation of materials with a desired refraction coefficient, etc. Contains chapters written by a group of esteemed researchers in mathematical analysis Includes problems and research questions in order to enhance understanding of the information provided Offers references that help readers advance to further study Written for researchers, graduate students, educators, and practitioners with an interest in mathematical analysis, Mathematical Analysis and Applications: Selected Topics includes the most recent research from a range of mathematical fields.
Approximate Fixed Points Of Nonexpansive Mappings
DOWNLOAD
Author : Alexander J. Zaslavski
language : en
Publisher: Springer Nature
Release Date : 2024-09-25
Approximate Fixed Points Of Nonexpansive Mappings written by Alexander J. Zaslavski and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-09-25 with Mathematics categories.
Fixed point theory of nonlinear operators has been a rapidly growing area of research and plays an important role in the study of variational inequalities, monotone operators, feasibility problems, and optimization theory, to name just several. This book discusses iteration processes associated with a given nonlinear mapping which generate its approximate fixed point and in some cases converge to a fixed point of the mapping. Various classes of nonlinear single-valued and set-valued mappings are considered along with iteration processes under the presence of computational errors. Of particular interest to mathematicians working in fixed point theory and nonlinear analysis, the added value for the reader are the solutions presented to a number of difficult problems in the fixed point theory which have important applications.
Fixed Point Theory And Graph Theory
DOWNLOAD
Author : Monther Alfuraidan
language : en
Publisher: Academic Press
Release Date : 2016-06-10
Fixed Point Theory And Graph Theory written by Monther Alfuraidan and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-06-10 with Mathematics categories.
Fixed Point Theory and Graph Theory provides an intersection between the theories of fixed point theorems that give the conditions under which maps (single or multivalued) have solutions and graph theory which uses mathematical structures to illustrate the relationship between ordered pairs of objects in terms of their vertices and directed edges. This edited reference work is perhaps the first to provide a link between the two theories, describing not only their foundational aspects, but also the most recent advances and the fascinating intersection of the domains. The authors provide solution methods for fixed points in different settings, with two chapters devoted to the solutions method for critically important non-linear problems in engineering, namely, variational inequalities, fixed point, split feasibility, and hierarchical variational inequality problems. The last two chapters are devoted to integrating fixed point theory in spaces with the graph and the use of retractions in the fixed point theory for ordered sets.
The Projected Subgradient Algorithm In Convex Optimization
DOWNLOAD
Author : Alexander J. Zaslavski
language : en
Publisher: Springer Nature
Release Date : 2020-11-25
The Projected Subgradient Algorithm In Convex Optimization written by Alexander J. Zaslavski and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-25 with Mathematics categories.
This focused monograph presents a study of subgradient algorithms for constrained minimization problems in a Hilbert space. The book is of interest for experts in applications of optimization to engineering and economics. The goal is to obtain a good approximate solution of the problem in the presence of computational errors. The discussion takes into consideration the fact that for every algorithm its iteration consists of several steps and that computational errors for different steps are different, in general. The book is especially useful for the reader because it contains solutions to a number of difficult and interesting problems in the numerical optimization. The subgradient projection algorithm is one of the most important tools in optimization theory and its applications. An optimization problem is described by an objective function and a set of feasible points. For this algorithm each iteration consists of two steps. The first step requires a calculation of a subgradient of the objective function; the second requires a calculation of a projection on the feasible set. The computational errors in each of these two steps are different. This book shows that the algorithm discussed, generates a good approximate solution, if all the computational errors are bounded from above by a small positive constant. Moreover, if computational errors for the two steps of the algorithm are known, one discovers an approximate solution and how many iterations one needs for this. In addition to their mathematical interest, the generalizations considered in this book have a significant practical meaning.
Advances In Metric Fixed Point Theory And Applications
DOWNLOAD
Author : Yeol Je Cho
language : en
Publisher: Springer Nature
Release Date : 2021-05-04
Advances In Metric Fixed Point Theory And Applications written by Yeol Je Cho and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-05-04 with Mathematics categories.
This book collects papers on major topics in fixed point theory and its applications. Each chapter is accompanied by basic notions, mathematical preliminaries and proofs of the main results. The book discusses common fixed point theory, convergence theorems, split variational inclusion problems and fixed point problems for asymptotically nonexpansive semigroups; fixed point property and almost fixed point property in digital spaces, nonexpansive semigroups over CAT(κ) spaces, measures of noncompactness, integral equations, the study of fixed points that are zeros of a given function, best proximity point theory, monotone mappings in modular function spaces, fuzzy contractive mappings, ordered hyperbolic metric spaces, generalized contractions in b-metric spaces, multi-tupled fixed points, functional equations in dynamic programming and Picard operators. This book addresses the mathematical community working with methods and tools of nonlinear analysis. It also serves as a reference, source for examples and new approaches associated with fixed point theory and its applications for a wide audience including graduate students and researchers.