[PDF] Approximation Methods And Analytical Modeling Using Partial Differential Equations - eBooks Review

Approximation Methods And Analytical Modeling Using Partial Differential Equations


Approximation Methods And Analytical Modeling Using Partial Differential Equations
DOWNLOAD

Download Approximation Methods And Analytical Modeling Using Partial Differential Equations PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Approximation Methods And Analytical Modeling Using Partial Differential Equations book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Approximation Methods And Analytical Modeling Using Partial Differential Equations


Approximation Methods And Analytical Modeling Using Partial Differential Equations
DOWNLOAD
Author : Tamara Fastovska
language : en
Publisher: Frontiers Media SA
Release Date : 2025-03-28

Approximation Methods And Analytical Modeling Using Partial Differential Equations written by Tamara Fastovska and has been published by Frontiers Media SA this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-03-28 with Science categories.


Adequate mathematical modeling is the key to success for many real-world projects in engineering, medicine, and other applied areas. As soon as an appropriate mathematical model is developed, it can be comprehensively analyzed by a broad spectrum of available mathematical methods. For example, compartmental models are widely used in mathematical epidemiology to describe the dynamics of infectious diseases and in mathematical models of population genetics. While the existence of an optimal solution under certain condition can be often proved rigorously, this does not always mean that such a solution is easy to implement in practice. Finding a reasonable approximation can in itself be a challenging research problem. This Research Topic is devoted to modeling, analysis, and approximation problems whose solutions exploit and explore the theory of partial differential equations. It aims to highlight new analytical tools for use in the modeling of problems arising in applied sciences and practical areas. Researchers are invited to submit articles that investigate the qualitative behavior of weak solutions (removability conditions for singularities), the dependence of the local asymptotic property of these solutions on initial and boundary data, and also the existence of solutions. Contributors are particularly encouraged to focus on anisotropic models: analyzing the preconditions on the strength of the anisotropy, and comparing the analytical estimates for the growth behavior of the solutions near the singularities with the observed growth in numerical simulations. The qualitative analysis and analytical results should be confirmed by the numerically observed solution behavior.



Partial Differential Equations Modeling Analysis And Numerical Approximation


Partial Differential Equations Modeling Analysis And Numerical Approximation
DOWNLOAD
Author : Hervé Le Dret
language : en
Publisher: Birkhäuser
Release Date : 2016-02-19

Partial Differential Equations Modeling Analysis And Numerical Approximation written by Hervé Le Dret and has been published by Birkhäuser this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-02-19 with Mathematics categories.


This book is devoted to the study of partial differential equation problems both from the theoretical and numerical points of view. After presenting modeling aspects, it develops the theoretical analysis of partial differential equation problems for the three main classes of partial differential equations: elliptic, parabolic and hyperbolic. Several numerical approximation methods adapted to each of these examples are analyzed: finite difference, finite element and finite volumes methods, and they are illustrated using numerical simulation results. Although parts of the book are accessible to Bachelor students in mathematics or engineering, it is primarily aimed at Masters students in applied mathematics or computational engineering. The emphasis is on mathematical detail and rigor for the analysis of both continuous and discrete problems.



A Compendium Of Partial Differential Equation Models


A Compendium Of Partial Differential Equation Models
DOWNLOAD
Author : William E. Schiesser
language : en
Publisher: Cambridge University Press
Release Date : 2009-03-16

A Compendium Of Partial Differential Equation Models written by William E. Schiesser and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-03-16 with Mathematics categories.


Mathematical modelling of physical and chemical systems is used extensively throughout science, engineering, and applied mathematics. To use mathematical models, one needs solutions to the model equations; this generally requires numerical methods. This book presents numerical methods and associated computer code in Matlab for the solution of a spectrum of models expressed as partial differential equations (PDEs). The authors focus on the method of lines (MOL), a well-established procedure for all major classes of PDEs, where the boundary value partial derivatives are approximated algebraically by finite differences. This reduces the PDEs to ordinary differential equations (ODEs) and makes the computer code easy to understand, implement, and modify. Also, the ODEs (via MOL) can be combined with any other ODEs that are part of the model (so that MOL naturally accommodates ODE/PDE models). This book uniquely includes a detailed line-by-line discussion of computer code related to the associated PDE model.



Numerical Approximation Of Partial Differential Equations


Numerical Approximation Of Partial Differential Equations
DOWNLOAD
Author : Sören Bartels
language : en
Publisher: Springer
Release Date : 2016-06-02

Numerical Approximation Of Partial Differential Equations written by Sören Bartels and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-06-02 with Mathematics categories.


Finite element methods for approximating partial differential equations have reached a high degree of maturity, and are an indispensible tool in science and technology. This textbook aims at providing a thorough introduction to the construction, analysis, and implementation of finite element methods for model problems arising in continuum mechanics. The first part of the book discusses elementary properties of linear partial differential equations along with their basic numerical approximation, the functional-analytical framework for rigorously establishing existence of solutions, and the construction and analysis of basic finite element methods. The second part is devoted to the optimal adaptive approximation of singularities and the fast iterative solution of linear systems of equations arising from finite element discretizations. In the third part, the mathematical framework for analyzing and discretizing saddle-point problems is formulated, corresponding finte element methods are analyzed, and particular applications including incompressible elasticity, thin elastic objects, electromagnetism, and fluid mechanics are addressed. The book includes theoretical problems and practical projects for all chapters, and an introduction to the implementation of finite element methods.



Numerical Approximation Of Partial Differential Equations


Numerical Approximation Of Partial Differential Equations
DOWNLOAD
Author : Alfio Quarteroni
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-02-11

Numerical Approximation Of Partial Differential Equations written by Alfio Quarteroni and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-02-11 with Mathematics categories.


Everything is more simple than one thinks but at the same time more complex than one can understand Johann Wolfgang von Goethe To reach the point that is unknown to you, you must take the road that is unknown to you St. John of the Cross This is a book on the numerical approximation ofpartial differential equations (PDEs). Its scope is to provide a thorough illustration of numerical methods (especially those stemming from the variational formulation of PDEs), carry out their stability and convergence analysis, derive error bounds, and discuss the algorithmic aspects relative to their implementation. A sound balancing of theoretical analysis, description of algorithms and discussion of applications is our primary concern. Many kinds of problems are addressed: linear and nonlinear, steady and time-dependent, having either smooth or non-smooth solutions. Besides model equations, we consider a number of (initial-) boundary value problems of interest in several fields of applications. Part I is devoted to the description and analysis of general numerical methods for the discretization of partial differential equations. A comprehensive theory of Galerkin methods and its variants (Petrov Galerkin and generalized Galerkin), as wellas ofcollocationmethods, is devel oped for the spatial discretization. This theory is then specified to two numer ical subspace realizations of remarkable interest: the finite element method (conforming, non-conforming, mixed, hybrid) and the spectral method (Leg endre and Chebyshev expansion).



Mathematical And Numerical Methods For Partial Differential Equations


Mathematical And Numerical Methods For Partial Differential Equations
DOWNLOAD
Author : Joël Chaskalovic
language : en
Publisher: Springer
Release Date : 2014-05-16

Mathematical And Numerical Methods For Partial Differential Equations written by Joël Chaskalovic and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-16 with Mathematics categories.


This self-tutorial offers a concise yet thorough introduction into the mathematical analysis of approximation methods for partial differential equation. A particular emphasis is put on finite element methods. The unique approach first summarizes and outlines the finite-element mathematics in general and then in the second and major part, formulates problem examples that clearly demonstrate the techniques of functional analysis via numerous and diverse exercises. The solutions of the problems are given directly afterwards. Using this approach, the author motivates and encourages the reader to actively acquire the knowledge of finite- element methods instead of passively absorbing the material as in most standard textbooks. This English edition is based on the Finite Element Methods for Engineering Sciences by Joel Chaskalovic.



Essential Partial Differential Equations


Essential Partial Differential Equations
DOWNLOAD
Author : David F. Griffiths
language : en
Publisher: Springer
Release Date : 2015-09-24

Essential Partial Differential Equations written by David F. Griffiths and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-09-24 with Mathematics categories.


This volume provides an introduction to the analytical and numerical aspects of partial differential equations (PDEs). It unifies an analytical and computational approach for these; the qualitative behaviour of solutions being established using classical concepts: maximum principles and energy methods. Notable inclusions are the treatment of irregularly shaped boundaries, polar coordinates and the use of flux-limiters when approximating hyperbolic conservation laws. The numerical analysis of difference schemes is rigorously developed using discrete maximum principles and discrete Fourier analysis. A novel feature is the inclusion of a chapter containing projects, intended for either individual or group study, that cover a range of topics such as parabolic smoothing, travelling waves, isospectral matrices, and the approximation of multidimensional advection–diffusion problems. The underlying theory is illustrated by numerous examples and there are around 300 exercises, designed to promote and test understanding. They are starred according to level of difficulty. Solutions to odd-numbered exercises are available to all readers while even-numbered solutions are available to authorised instructors. Written in an informal yet rigorous style, Essential Partial Differential Equations is designed for mathematics undergraduates in their final or penultimate year of university study, but will be equally useful for students following other scientific and engineering disciplines in which PDEs are of practical importance. The only prerequisite is a familiarity with the basic concepts of calculus and linear algebra.



Analytic Methods For Partial Differential Equations


Analytic Methods For Partial Differential Equations
DOWNLOAD
Author : G. Evans
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Analytic Methods For Partial Differential Equations written by G. Evans and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


The subject of partial differential equations holds an exciting and special position in mathematics. Partial differential equations were not consciously created as a subject but emerged in the 18th century as ordinary differential equations failed to describe the physical principles being studied. The subject was originally developed by the major names of mathematics, in particular, Leonard Euler and Joseph-Louis Lagrange who studied waves on strings; Daniel Bernoulli and Euler who considered potential theory, with later developments by Adrien-Marie Legendre and Pierre-Simon Laplace; and Joseph Fourier's famous work on series expansions for the heat equation. Many of the greatest advances in modern science have been based on discovering the underlying partial differential equation for the process in question. J ames Clerk Maxwell, for example, put electricity and magnetism into a unified theory by estab lishing Maxwell's equations for electromagnetic theory, which gave solutions for problems in radio wave propagation, the diffraction of light and X-ray developments. Schrodinger's equation for quantum mechankal processes at the atomic level leads to experimentally verifiable results which have changed the face of atomic physics and chemistry in the 20th century. In fluid mechanics, the Navier-Stokes' equations form a basis for huge number-crunching activities associated with such widely disparate topics as weather forcasting and the design of supersonic aircraft. Inevitably the study of partial differential equations is a large undertaking, and falls into several areas of mathematics.



Numerical Methods For Stochastic Partial Differential Equations With White Noise


Numerical Methods For Stochastic Partial Differential Equations With White Noise
DOWNLOAD
Author : Zhongqiang Zhang
language : en
Publisher: Springer
Release Date : 2017-09-01

Numerical Methods For Stochastic Partial Differential Equations With White Noise written by Zhongqiang Zhang and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-01 with Mathematics categories.


This book covers numerical methods for stochastic partial differential equations with white noise using the framework of Wong-Zakai approximation. The book begins with some motivational and background material in the introductory chapters and is divided into three parts. Part I covers numerical stochastic ordinary differential equations. Here the authors start with numerical methods for SDEs with delay using the Wong-Zakai approximation and finite difference in time. Part II covers temporal white noise. Here the authors consider SPDEs as PDEs driven by white noise, where discretization of white noise (Brownian motion) leads to PDEs with smooth noise, which can then be treated by numerical methods for PDEs. In this part, recursive algorithms based on Wiener chaos expansion and stochastic collocation methods are presented for linear stochastic advection-diffusion-reaction equations. In addition, stochastic Euler equations are exploited as an application of stochastic collocation methods, where a numerical comparison with other integration methods in random space is made. Part III covers spatial white noise. Here the authors discuss numerical methods for nonlinear elliptic equations as well as other equations with additive noise. Numerical methods for SPDEs with multiplicative noise are also discussed using the Wiener chaos expansion method. In addition, some SPDEs driven by non-Gaussian white noise are discussed and some model reduction methods (based on Wick-Malliavin calculus) are presented for generalized polynomial chaos expansion methods. Powerful techniques are provided for solving stochastic partial differential equations. This book can be considered as self-contained. Necessary background knowledge is presented in the appendices. Basic knowledge of probability theory and stochastic calculus is presented in Appendix A. In Appendix B some semi-analytical methods for SPDEs are presented. In Appendix C an introduction to Gauss quadrature is provided. In Appendix D, all the conclusions which are needed for proofs are presented, and in Appendix E a method to compute the convergence rate empirically is included. In addition, the authors provide a thorough review of the topics, both theoretical and computational exercises in the book with practical discussion of the effectiveness of the methods. Supporting Matlab files are made available to help illustrate some of the concepts further. Bibliographic notes are included at the end of each chapter. This book serves as a reference for graduate students and researchers in the mathematical sciences who would like to understand state-of-the-art numerical methods for stochastic partial differential equations with white noise.



Numerical Methods For Nonlinear Partial Differential Equations


Numerical Methods For Nonlinear Partial Differential Equations
DOWNLOAD
Author : Sören Bartels
language : en
Publisher: Springer
Release Date : 2015-01-19

Numerical Methods For Nonlinear Partial Differential Equations written by Sören Bartels and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-01-19 with Mathematics categories.


The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly complete, only few results are available in the case of nonlinear equations. This monograph devises numerical methods for nonlinear model problems arising in the mathematical description of phase transitions, large bending problems, image processing, and inelastic material behavior. For each of these problems the underlying mathematical model is discussed, the essential analytical properties are explained, and the proposed numerical method is rigorously analyzed. The practicality of the algorithms is illustrated by means of short implementations.