Approximation Of Stochastic Invariant Manifolds

DOWNLOAD
Download Approximation Of Stochastic Invariant Manifolds PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Approximation Of Stochastic Invariant Manifolds book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Approximation Of Stochastic Invariant Manifolds
DOWNLOAD
Author : Mickaël D. Chekroun
language : en
Publisher: Springer
Release Date : 2014-12-20
Approximation Of Stochastic Invariant Manifolds written by Mickaël D. Chekroun and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-12-20 with Mathematics categories.
This first volume is concerned with the analytic derivation of explicit formulas for the leading-order Taylor approximations of (local) stochastic invariant manifolds associated with a broad class of nonlinear stochastic partial differential equations. These approximations take the form of Lyapunov-Perron integrals, which are further characterized in Volume II as pullback limits associated with some partially coupled backward-forward systems. This pullback characterization provides a useful interpretation of the corresponding approximating manifolds and leads to a simple framework that unifies some other approximation approaches in the literature. A self-contained survey is also included on the existence and attraction of one-parameter families of stochastic invariant manifolds, from the point of view of the theory of random dynamical systems.
Stochastic Parameterizing Manifolds And Non Markovian Reduced Equations
DOWNLOAD
Author : Mickaël D. Chekroun
language : en
Publisher: Springer
Release Date : 2014-12-23
Stochastic Parameterizing Manifolds And Non Markovian Reduced Equations written by Mickaël D. Chekroun and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-12-23 with Mathematics categories.
In this second volume, a general approach is developed to provide approximate parameterizations of the "small" scales by the "large" ones for a broad class of stochastic partial differential equations (SPDEs). This is accomplished via the concept of parameterizing manifolds (PMs), which are stochastic manifolds that improve, for a given realization of the noise, in mean square error the partial knowledge of the full SPDE solution when compared to its projection onto some resolved modes. Backward-forward systems are designed to give access to such PMs in practice. The key idea consists of representing the modes with high wave numbers as a pullback limit depending on the time-history of the modes with low wave numbers. Non-Markovian stochastic reduced systems are then derived based on such a PM approach. The reduced systems take the form of stochastic differential equations involving random coefficients that convey memory effects. The theory is illustrated on a stochastic Burgers-type equation.
New Trends In Stochastic Analysis And Related Topics
DOWNLOAD
Author : Huaizhong Zhao
language : en
Publisher: World Scientific
Release Date : 2012
New Trends In Stochastic Analysis And Related Topics written by Huaizhong Zhao and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with Mathematics categories.
The volume is dedicated to Professor David Elworthy to celebrate his fundamental contribution and exceptional influence on stochastic analysis and related fields. Stochastic analysis has been profoundly developed as a vital fundamental research area in mathematics in recent decades. It has been discovered to have intrinsic connections with many other areas of mathematics such as partial differential equations, functional analysis, topology, differential geometry, dynamical systems, etc. Mathematicians developed many mathematical tools in stochastic analysis to understand and model random phenomena in physics, biology, finance, fluid, environment science, etc. This volume contains 12 comprehensive review/new articles written by world leading researchers (by invitation) and their collaborators. It covers stochastic analysis on manifolds, rough paths, Dirichlet forms, stochastic partial differential equations, stochastic dynamical systems, infinite dimensional analysis, stochastic flows, quantum stochastic analysis and stochastic Hamilton Jacobi theory. Articles contain cutting edge research methodology, results and ideas in relevant fields. They are of interest to research mathematicians and postgraduate students in stochastic analysis, probability, partial differential equations, dynamical systems, mathematical physics, as well as to physicists, financial mathematicians, engineers, etc.
Extremes And Recurrence In Dynamical Systems
DOWNLOAD
Author : Valerio Lucarini
language : en
Publisher: John Wiley & Sons
Release Date : 2016-04-04
Extremes And Recurrence In Dynamical Systems written by Valerio Lucarini and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-04-04 with Mathematics categories.
Written by a team of international experts, Extremes and Recurrence in Dynamical Systems presents a unique point of view on the mathematical theory of extremes and on its applications in the natural and social sciences. Featuring an interdisciplinary approach to new concepts in pure and applied mathematical research, the book skillfully combines the areas of statistical mechanics, probability theory, measure theory, dynamical systems, statistical inference, geophysics, and software application. Emphasizing the statistical mechanical point of view, the book introduces robust theoretical embedding for the application of extreme value theory in dynamical systems. Extremes and Recurrence in Dynamical Systems also features: • A careful examination of how a dynamical system can serve as a generator of stochastic processes • Discussions on the applications of statistical inference in the theoretical and heuristic use of extremes • Several examples of analysis of extremes in a physical and geophysical context • A final summary of the main results presented along with a guide to future research projects • An appendix with software in Matlab® programming language to help readers to develop further understanding of the presented concepts Extremes and Recurrence in Dynamical Systems is ideal for academics and practitioners in pure and applied mathematics, probability theory, statistics, chaos, theoretical and applied dynamical systems, statistical mechanics, geophysical fluid dynamics, geosciences and complexity science. VALERIO LUCARINI, PhD, is Professor of Theoretical Meteorology at the University of Hamburg, Germany and Professor of Statistical Mechanics at the University of Reading, UK. DAVIDE FARANDA, PhD, is Researcher at the Laboratoire des science du climat et de l’environnement, IPSL, CEA Saclay, Université Paris-Saclay, Gif-sur-Yvette, France. ANA CRISTINA GOMES MONTEIRO MOREIRA DE FREITAS, PhD, is Assistant Professor in the Faculty of Economics at the University of Porto, Portugal. JORGE MIGUEL MILHAZES DE FREITAS, PhD, is Assistant Professor in the Department of Mathematics of the Faculty of Sciences at the University of Porto, Portugal. MARK HOLLAND, PhD, is Senior Lecturer in Applied Mathematics in the College of Engineering, Mathematics and Physical Sciences at the University of Exeter, UK. TOBIAS KUNA, PhD, is Associate Professor in the Department of Mathematics and Statistics at the University of Reading, UK. MATTHEW NICOL, PhD, is Professor of Mathematics at the University of Houston, USA. MIKE TODD, PhD, is Lecturer in the School of Mathematics and Statistics at the University of St. Andrews, Scotland. SANDRO VAIENTI, PhD, is Professor of Mathematics at the University of Toulon and Researcher at the Centre de Physique Théorique, France.
Advances In Nonlinear Geosciences
DOWNLOAD
Author : Anastasios A. Tsonis
language : en
Publisher: Springer
Release Date : 2017-10-13
Advances In Nonlinear Geosciences written by Anastasios A. Tsonis and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-10-13 with Science categories.
Advances in Nonlinear Geosciences is a set of contributions from the participants of “30 Years of Nonlinear Dynamics” held July 3-8, 2016 in Rhodes, Greece as part of the Aegean Conferences, as well as from several other experts in the field who could not attend the meeting. The volume brings together up-to-date research from the atmospheric sciences, hydrology, geology, and other areas of geosciences and presents the new advances made in the last 10 years. Topics include chaos synchronization, topological data analysis, new insights on fractals, multifractals and stochasticity, climate dynamics, extreme events, complexity, and causality, among other topics.
Invariant Manifolds And Fibrations For Perturbed Nonlinear Schr Dinger Equations
DOWNLOAD
Author : Charles Li
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Invariant Manifolds And Fibrations For Perturbed Nonlinear Schr Dinger Equations written by Charles Li and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
This book presents a development of invariant manifold theory for a spe cific canonical nonlinear wave system -the perturbed nonlinear Schrooinger equation. The main results fall into two parts. The first part is concerned with the persistence and smoothness of locally invariant manifolds. The sec ond part is concerned with fibrations of the stable and unstable manifolds of inflowing and overflowing invariant manifolds. The central technique for proving these results is Hadamard's graph transform method generalized to an infinite-dimensional setting. However, our setting is somewhat different than other approaches to infinite dimensional invariant manifolds since for conservative wave equations many of the interesting invariant manifolds are infinite dimensional and noncom pact. The style of the book is that of providing very detailed proofs of theorems for a specific infinite dimensional dynamical system-the perturbed nonlinear Schrodinger equation. The book is organized as follows. Chapter one gives an introduction which surveys the state of the art of invariant manifold theory for infinite dimensional dynamical systems. Chapter two develops the general setup for the perturbed nonlinear Schrodinger equation. Chapter three gives the proofs of the main results on persistence and smoothness of invariant man ifolds. Chapter four gives the proofs of the main results on persistence and smoothness of fibrations of invariant manifolds. This book is an outgrowth of our work over the past nine years concerning homoclinic chaos in the perturbed nonlinear Schrodinger equation. The theorems in this book provide key building blocks for much of that work.
Mathematical Approach To Climate Change And Its Impacts
DOWNLOAD
Author : Piermarco Cannarsa
language : en
Publisher: Springer Nature
Release Date : 2020-03-16
Mathematical Approach To Climate Change And Its Impacts written by Piermarco Cannarsa and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-16 with Science categories.
This book presents important recent applied mathematics research on environmental problems and impacts due to climate change. Although there are inherent difficulties in addressing phenomena that are part of such a complex system, exploration of the subject using mathematical modelling is especially suited to tackling poorly understood issues in the field. It is in this spirit that the book was conceived. It is an outcome of the International INDAM Workshop “Mathematical Approach to Climate Change Impacts – MAC2I”, held in Rome in March 2017. The workshop comprised four sessions, on Ecosystems, Hydrology, Glaciology, and Monitoring. The book includes peer-reviewed contributions on research issues discussed during each of these sessions or generated by collaborations among the specialists involved. Accurate parameter determination techniques are explained and innovative mathematical modelling approaches, presented. The book also provides useful material and mathematical problem-solving tools for doctoral programs dealing with the complexities of climate change.
Invariant Manifolds For Stochastic Pde With Fractional Brownian Motion
DOWNLOAD
Author : Alberto Ohashi
language : en
Publisher:
Release Date : 2007
Invariant Manifolds For Stochastic Pde With Fractional Brownian Motion written by Alberto Ohashi and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with categories.
Normally Hyperbolic Invariant Manifolds In Dynamical Systems
DOWNLOAD
Author : Stephen Wiggins
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-11-22
Normally Hyperbolic Invariant Manifolds In Dynamical Systems written by Stephen Wiggins and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-22 with Mathematics categories.
In the past ten years, there has been much progress in understanding the global dynamics of systems with several degrees-of-freedom. An important tool in these studies has been the theory of normally hyperbolic invariant manifolds and foliations of normally hyperbolic invariant manifolds. In recent years these techniques have been used for the development of global perturbation methods, the study of resonance phenomena in coupled oscillators, geometric singular perturbation theory, and the study of bursting phenomena in biological oscillators. "Invariant manifold theorems" have become standard tools for applied mathematicians, physicists, engineers, and virtually anyone working on nonlinear problems from a geometric viewpoint. In this book, the author gives a self-contained development of these ideas as well as proofs of the main theorems along the lines of the seminal works of Fenichel. In general, the Fenichel theory is very valuable for many applications, but it is not easy for people to get into from existing literature. This book provides an excellent avenue to that. Wiggins also describes a variety of settings where these techniques can be used in applications.
Iutam Symposium On Dynamics And Control Of Nonlinear Systems With Uncertainty
DOWNLOAD
Author : H.Y. Hu
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-07-26
Iutam Symposium On Dynamics And Control Of Nonlinear Systems With Uncertainty written by H.Y. Hu and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-07-26 with Science categories.
This is a state-of-the-art treatise on the problems of both nonlinearity and uncertainty in the dynamics and control of engineering systems. The concept of dynamics and control implies the combination of dynamic analysis and control synthesis. It is essential to gain insight into the dynamics of a nonlinear system with uncertainty if any new control strategy is designed to utilize nonlinearity.