Artificial Intelligence And Deep Learning

DOWNLOAD
Download Artificial Intelligence And Deep Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Artificial Intelligence And Deep Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Artificial Intelligence Machine Learning And Deep Learning
DOWNLOAD
Author : Oswald Campesato
language : en
Publisher: Mercury Learning and Information
Release Date : 2020-01-23
Artificial Intelligence Machine Learning And Deep Learning written by Oswald Campesato and has been published by Mercury Learning and Information this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-23 with Computers categories.
This book begins with an introduction to AI, followed by machine learning, deep learning, NLP, and reinforcement learning. Readers will learn about machine learning classifiers such as logistic regression, k-NN, decision trees, random forests, and SVMs. Next, the book covers deep learning architectures such as CNNs, RNNs, LSTMs, and auto encoders. Keras-based code samples are included to supplement the theoretical discussion. In addition, this book contains appendices for Keras, TensorFlow 2, and Pandas. Features: Covers an introduction to programming concepts related to AI, machine learning, and deep learning Includes material on Keras, TensorFlow2 and Pandas
Deep Learning For Coders With Fastai And Pytorch
DOWNLOAD
Author : Jeremy Howard
language : en
Publisher: O'Reilly Media
Release Date : 2020-06-29
Deep Learning For Coders With Fastai And Pytorch written by Jeremy Howard and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-29 with Computers categories.
Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala
Deep Learning
DOWNLOAD
Author : Ian Goodfellow
language : en
Publisher: MIT Press
Release Date : 2016-11-10
Deep Learning written by Ian Goodfellow and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-10 with Computers categories.
An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
Machine Learning A Journey To Deep Learning With Exercises And Answers
DOWNLOAD
Author : Andreas Miroslaus Wichert
language : en
Publisher: World Scientific
Release Date : 2021-01-26
Machine Learning A Journey To Deep Learning With Exercises And Answers written by Andreas Miroslaus Wichert and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-01-26 with Computers categories.
This unique compendium discusses some core ideas for the development and implementation of machine learning from three different perspectives — the statistical perspective, the artificial neural network perspective and the deep learning methodology.The useful reference text represents a solid foundation in machine learning and should prepare readers to apply and understand machine learning algorithms as well as to invent new machine learning methods. It tells a story outgoing from a perceptron to deep learning highlighted with concrete examples, including exercises and answers for the students.Related Link(s)
An Intuitive Exploration Of Artificial Intelligence
DOWNLOAD
Author : Simant Dube
language : en
Publisher: Springer Nature
Release Date : 2021-06-21
An Intuitive Exploration Of Artificial Intelligence written by Simant Dube and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-06-21 with Computers categories.
This book develops a conceptual understanding of Artificial Intelligence (AI), Deep Learning and Machine Learning in the truest sense of the word. It is an earnest endeavor to unravel what is happening at the algorithmic level, to grasp how applications are being built and to show the long adventurous road in the future. An Intuitive Exploration of Artificial Intelligence offers insightful details on how AI works and solves problems in computer vision, natural language understanding, speech understanding, reinforcement learning and synthesis of new content. From the classic problem of recognizing cats and dogs, to building autonomous vehicles, to translating text into another language, to automatically converting speech into text and back to speech, to generating neural art, to playing games, and the author's own experience in building solutions in industry, this book is about explaining how exactly the myriad applications of AI flow out of its immense potential. The book is intended to serve as a textbook for graduate and senior-level undergraduate courses in AI. Moreover, since the book provides a strong geometrical intuition about advanced mathematical foundations of AI, practitioners and researchers will equally benefit from the book.
Artificial Intelligence Driven By Machine Learning And Deep Learning
DOWNLOAD
Author : Bahman Zohuri
language : en
Publisher: Nova Science Publishers
Release Date : 2020
Artificial Intelligence Driven By Machine Learning And Deep Learning written by Bahman Zohuri and has been published by Nova Science Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Computers categories.
"The future of any business from banking, e-commerce, real estate, homeland security, healthcare, marketing, the stock market, manufacturing, education, retail to government organizations depends on the data and analytics capabilities that are built and scaled. The speed of change in technology in recent years has been a real challenge for all businesses. To manage that, a significant number of organizations are exploring the BigData (BD) infrastructure that helps them to take advantage of new opportunities while saving costs. Timely transformation of information is also critical for the survivability of an organization. Having the right information at the right time will enhance not only the knowledge of stakeholders within an organization but also providing them with a tool to make the right decision at the right moment. It is no longer enough to rely on a sampling of information about the organizations' customers. The decision-makers need to get vital insights into the customers' actual behavior, which requires enormous volumes of data to be processed. We believe that Big Data infrastructure is the key to successful Artificial Intelligence (AI) deployments and accurate, unbiased real-time insights. Big data solutions have a direct impact and changing the way the organization needs to work with help from AI and its components ML and DL. In this article, we discuss these topics"--
Challenges And Applications For Implementing Machine Learning In Computer Vision
DOWNLOAD
Author : Kashyap, Ramgopal
language : en
Publisher: IGI Global
Release Date : 2019-10-04
Challenges And Applications For Implementing Machine Learning In Computer Vision written by Kashyap, Ramgopal and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-10-04 with Computers categories.
Machine learning allows for non-conventional and productive answers for issues within various fields, including problems related to visually perceptive computers. Applying these strategies and algorithms to the area of computer vision allows for higher achievement in tasks such as spatial recognition, big data collection, and image processing. There is a need for research that seeks to understand the development and efficiency of current methods that enable machines to see. Challenges and Applications for Implementing Machine Learning in Computer Vision is a collection of innovative research that combines theory and practice on adopting the latest deep learning advancements for machines capable of visual processing. Highlighting a wide range of topics such as video segmentation, object recognition, and 3D modelling, this publication is ideally designed for computer scientists, medical professionals, computer engineers, information technology practitioners, industry experts, scholars, researchers, and students seeking current research on the utilization of evolving computer vision techniques.
The Principles Of Deep Learning Theory
DOWNLOAD
Author : Daniel A. Roberts
language : en
Publisher: Cambridge University Press
Release Date : 2022-05-26
The Principles Of Deep Learning Theory written by Daniel A. Roberts and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-26 with Computers categories.
This volume develops an effective theory approach to understanding deep neural networks of practical relevance.
Artificial Intelligence And Deep Learning For Decision Makers
DOWNLOAD
Author : Kaur Dr. Jagreet
language : en
Publisher: BPB Publications
Release Date : 2019-12-28
Artificial Intelligence And Deep Learning For Decision Makers written by Kaur Dr. Jagreet and has been published by BPB Publications this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-28 with Computers categories.
Learn modern-day technologies from modern-day technical giants.KEY FEATURES1. Real-world success and failure stories of artificial intelligence explained2. Understand concepts of artificial intelligence and deep learning methods 3. Learn how to use artificial intelligence and deep learning methods4. Know how to prepare dataset and implement models using industry leading Python packages 5. You'll be able to apply and analyze the results produced by the models for predictionDESCRIPTION The aim of this book is to help the readers understand the concept of artificial intelligence and deep learning methods and implement them into their businesses and organizations. The first two chapters describe the introduction of the artificial intelligence and deep learning methods. In the first chapter, the concept of human thinking process, starting from the biochemical responses within the structure of neurons to the problem-solving steps through computational thinking skills are discussed. All chapters after the first two should be considered as the study of different technological and Artificial Intelligence giants of current age. These chapters are placed in a way that each chapter could be considered a separate study of a separate company, which includes the achievements of intelligent services currently provided by the company, discussion on the business model of the company towards the use of the deep learning technologies, the advancement of the web services which are incorporated with intelligent capability introduced by company, the efforts of the company in contributing to the development of the artificial intelligence and deep learning research. WHAT WILL YOU LEARN How to use the algorithms written in the Python programming language to design models and perform predictions in general datasetsUnderstand use cases in different industries related to the implementation of artificial intelligence and deep learning methodsLearn the use of potential ideas in artificial intelligence and deep learning methods to improve the operational processes or new products and how services can be produced based on the methodsWHO THIS BOOK IS FORThis book is targeted to business and organization leaders, technology enthusiasts, professionals, and managers who seek knowledge of artificial intelligence and deep learning methods.Table of Contents1. Artificial Intelligence and Deep Learning2. Data Science for Business Analysis3. Decision Making4. Intelligent Computing Strategies By Google 5. Cognitive Learning Services in IBM Watson6. Advancement web services by Baidu 7. Improved Social Business by Facebook8. Personalized Intelligent Computing by Apple9. Cloud Computing Intelligent by MicrosoftAbout the AuthorDr. Jagreet KaurDr. Jagreet Kaur is a doctorate in computer science and engineering. Her topic of thesis was "e;ARTIFICIAL INTELLIGENCE BASED ANALYTICAL PLATFORM FOR PREDICTIVE ANALYSIS IN HEALTH CARE."e; With more than 12 years of experience in academics and research, she is working in data wrangling, machine learning and deeplearning algorithms on large datasets, real-time data often in production environments for data science solutions and data products to get actionable insights for the last four years. She also possesses ten international publications and five national publications under her name.Her skill set includes data engineering skills (Hadoop, Apache Spark, Apache Kafka, Cassandra, Hive, Flume, Scoop, and Elasticsearch), programming skills (Python, Angularjs, D3.js , Machine Learning, and R), data science skills (Statistics, Machine Learning, NLP, NLTK, Artificial Intelligence, R, Python, Pandas, Sklearn, Hadoop, SQL, Statistical Modeling, Data Munging, Decision Science, Machine Learning, Graph Analysis, Text Mining and Optimization, and Web Scraping, Deep learning packages:- Theano, Keras, Tensorflow, Pytorch, Julia) and Algorithms Specialization (Regression Algorithms: Linear Regression, Random Forest Regressor, XGBoost, SVR, Ridge Regression, Lasso Regression, Neural Networks Classification Algorithms: Decision Trees, Random Forest Classifier, Support Vector Machines(SVM), Logistic Regression, KNN Classifier, Neural Network, Clustering Algorithms: K-Means, DBSCAN, Deep Learning Algorithms: Simple RNN, LSTM Network, GRU)Currently, she works as a Chief Operating Officer (COO) and Chief Data Scientist in Xenonstack. Under her Guidance, more than 400 projects are already developed and productionized which also includes more than 200 AI and data science projects. Navdeep Singh GillNaveed Singh Gill is a technology and solution architect having more than 15 years of experience in the IT and Telecom industry. For the past six years, he is working in big data analytics, automation and advanced analytics using machine learning and deep learning for planning and architecting of data science solutions and data products. He's also working in 3 As (Analytics, Automation, and AI), more focused on writing software for building data lake, analytics platform , NoSQL deployments, data migration, data modelling tasks, ML/DL on real-time data often in production environments.He started his career with HFCL Infotel as a network engineer for managing the technical network of Broadband Customers with Linux servers and Cisco routers. He also worked in Ericsson, where he handled the synchronization plan and implementation for synchronization of Microwave Network and Media Gateway, MSS, and Core Network. SSU Implementation Planning and Optimization with respect to IP RAN, Mobile Backhaul Solution- Optimization of Existing Microwave Network to Ethernet, Microwave Hybrid Solution, Convergence to all IP, SIU Implementation for conversion to IP of Existing BTS,GB over IP.His area of expertise includes Hadoop, Openstack, DevOps, Kubernetes, Dockers, Amazon web services, Apache Spark, Apache Storm, Apache Kafka, Hbase, Solr, Apache FlinkNutch, Mapreduce, Pig, Hive, Flume, Scoop, ElasticSearch, and programming expertise includes Python, Angular.js, and Node.js.
Artificial Intelligence And Machine Learning Fundamentals
DOWNLOAD
Author : Zsolt Nagy
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-12-12
Artificial Intelligence And Machine Learning Fundamentals written by Zsolt Nagy and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-12 with Computers categories.
Create AI applications in Python and lay the foundations for your career in data science Key FeaturesPractical examples that explain key machine learning algorithmsExplore neural networks in detail with interesting examplesMaster core AI concepts with engaging activitiesBook Description Machine learning and neural networks are pillars on which you can build intelligent applications. Artificial Intelligence and Machine Learning Fundamentals begins by introducing you to Python and discussing AI search algorithms. You will cover in-depth mathematical topics, such as regression and classification, illustrated by Python examples. As you make your way through the book, you will progress to advanced AI techniques and concepts, and work on real-life datasets to form decision trees and clusters. You will be introduced to neural networks, a powerful tool based on Moore's law. By the end of this book, you will be confident when it comes to building your own AI applications with your newly acquired skills! What you will learnUnderstand the importance, principles, and fields of AIImplement basic artificial intelligence concepts with PythonApply regression and classification concepts to real-world problemsPerform predictive analysis using decision trees and random forestsCarry out clustering using the k-means and mean shift algorithmsUnderstand the fundamentals of deep learning via practical examplesWho this book is for Artificial Intelligence and Machine Learning Fundamentals is for software developers and data scientists who want to enrich their projects with machine learning. You do not need any prior experience in AI. However, it’s recommended that you have knowledge of high school-level mathematics and at least one programming language (preferably Python).