[PDF] Deep Learning - eBooks Review

Deep Learning


Deep Learning
DOWNLOAD

Download Deep Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Deep Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Deep Learning


Deep Learning
DOWNLOAD
Author : Siddhartha Bhattacharyya
language : en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date : 2020-06-22

Deep Learning written by Siddhartha Bhattacharyya and has been published by Walter de Gruyter GmbH & Co KG this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-22 with Computers categories.


This book focuses on the fundamentals of deep learning along with reporting on the current state-of-art research on deep learning. In addition, it provides an insight of deep neural networks in action with illustrative coding examples. Deep learning is a new area of machine learning research which has been introduced with the objective of moving ML closer to one of its original goals, i.e. artificial intelligence. Deep learning was developed as an ML approach to deal with complex input-output mappings. While traditional methods successfully solve problems where final value is a simple function of input data, deep learning techniques are able to capture composite relations between non-immediately related fields, for example between air pressure recordings and English words, millions of pixels and textual description, brand-related news and future stock prices and almost all real world problems. Deep learning is a class of nature inspired machine learning algorithms that uses a cascade of multiple layers of nonlinear processing units for feature extraction and transformation. Each successive layer uses the output from the previous layer as input. The learning may be supervised (e.g. classification) and/or unsupervised (e.g. pattern analysis) manners. These algorithms learn multiple levels of representations that correspond to different levels of abstraction by resorting to some form of gradient descent for training via backpropagation. Layers that have been used in deep learning include hidden layers of an artificial neural network and sets of propositional formulas. They may also include latent variables organized layer-wise in deep generative models such as the nodes in deep belief networks and deep boltzmann machines. Deep learning is part of state-of-the-art systems in various disciplines, particularly computer vision, automatic speech recognition (ASR) and human action recognition.



Deep Learning


Deep Learning
DOWNLOAD
Author : Christopher M. Bishop
language : en
Publisher: Springer Nature
Release Date : 2023-11-01

Deep Learning written by Christopher M. Bishop and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-11-01 with Computers categories.


This book offers a comprehensive introduction to the central ideas that underpin deep learning. It is intended both for newcomers to machine learning and for those already experienced in the field. Covering key concepts relating to contemporary architectures and techniques, this essential book equips readers with a robust foundation for potential future specialization. The field of deep learning is undergoing rapid evolution, and therefore this book focusses on ideas that are likely to endure the test of time. The book is organized into numerous bite-sized chapters, each exploring a distinct topic, and the narrative follows a linear progression, with each chapter building upon content from its predecessors. This structure is well-suited to teaching a two-semester undergraduate or postgraduate machine learning course, while remaining equally relevant to those engaged in active research or in self-study. A full understanding of machine learning requires some mathematical background and so the book includes a self-contained introduction to probability theory. However, the focus of the book is on conveying a clear understanding of ideas, with emphasis on the real-world practical value of techniques rather than on abstract theory. Complex concepts are therefore presented from multiple complementary perspectives including textual descriptions, diagrams, mathematical formulae, and pseudo-code. Chris Bishop is a Technical Fellow at Microsoft and is the Director of Microsoft Research AI4Science. He is a Fellow of Darwin College Cambridge, a Fellow of the Royal Academy of Engineering, and a Fellow of the Royal Society. Hugh Bishop is an Applied Scientist at Wayve, a deep learning autonomous driving company in London, where he designs and trains deep neural networks. He completed his MPhil in Machine Learning and Machine Intelligence at Cambridge University. “Chris Bishop wrote a terrific textbook on neural networks in 1995 and has a deep knowledge of the field and its core ideas. His many years of experience in explaining neural networks have made him extremely skillful at presenting complicated ideas in the simplest possible way and it is a delight to see these skills applied to the revolutionary new developments in the field.” -- Geoffrey Hinton "With the recent explosion of deep learning and AI as a research topic, and the quickly growing importance of AI applications, a modern textbook on the topic was badly needed. The "New Bishop" masterfully fills the gap, covering algorithms for supervised and unsupervised learning, modern deep learning architecture families, as well as how to apply all of this to various application areas." – Yann LeCun “This excellent and very educational book will bring the reader up to date with the main concepts and advances in deep learning with a solid anchoring in probability. These concepts are powering current industrial AI systems and are likely to form the basis of further advances towards artificial general intelligence.” -- Yoshua Bengio



Neural Networks And Deep Learning


Neural Networks And Deep Learning
DOWNLOAD
Author : Charu C. Aggarwal
language : en
Publisher: Springer
Release Date : 2018-08-25

Neural Networks And Deep Learning written by Charu C. Aggarwal and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-25 with Computers categories.


This book covers both classical and modern models in deep learning. The primary focus is on the theory and algorithms of deep learning. The theory and algorithms of neural networks are particularly important for understanding important concepts, so that one can understand the important design concepts of neural architectures in different applications. Why do neural networks work? When do they work better than off-the-shelf machine-learning models? When is depth useful? Why is training neural networks so hard? What are the pitfalls? The book is also rich in discussing different applications in order to give the practitioner a flavor of how neural architectures are designed for different types of problems. Applications associated with many different areas like recommender systems, machine translation, image captioning, image classification, reinforcement-learning based gaming, and text analytics are covered. The chapters of this book span three categories: The basics of neural networks: Many traditional machine learning models can be understood as special cases of neural networks. An emphasis is placed in the first two chapters on understanding the relationship between traditional machine learning and neural networks. Support vector machines, linear/logistic regression, singular value decomposition, matrix factorization, and recommender systems are shown to be special cases of neural networks. These methods are studied together with recent feature engineering methods like word2vec. Fundamentals of neural networks: A detailed discussion of training and regularization is provided in Chapters 3 and 4. Chapters 5 and 6 present radial-basis function (RBF) networks and restricted Boltzmann machines. Advanced topics in neural networks: Chapters 7 and 8 discuss recurrent neural networks and convolutional neural networks. Several advanced topics like deep reinforcement learning, neural Turing machines, Kohonen self-organizing maps, and generative adversarial networks are introduced in Chapters 9 and 10. The book is written for graduate students, researchers, and practitioners. Numerous exercises are available along with a solution manual to aid in classroom teaching. Where possible, an application-centric view is highlighted in order to provide an understanding of the practical uses of each class of techniques.



Learning Deep Learning


Learning Deep Learning
DOWNLOAD
Author : Magnus Ekman
language : en
Publisher: Addison-Wesley Professional
Release Date : 2021-07-19

Learning Deep Learning written by Magnus Ekman and has been published by Addison-Wesley Professional this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-07-19 with Computers categories.


NVIDIA's Full-Color Guide to Deep Learning: All You Need to Get Started and Get Results "To enable everyone to be part of this historic revolution requires the democratization of AI knowledge and resources. This book is timely and relevant towards accomplishing these lofty goals." -- From the foreword by Dr. Anima Anandkumar, Bren Professor, Caltech, and Director of ML Research, NVIDIA "Ekman uses a learning technique that in our experience has proven pivotal to success—asking the reader to think about using DL techniques in practice. His straightforward approach is refreshing, and he permits the reader to dream, just a bit, about where DL may yet take us." -- From the foreword by Dr. Craig Clawson, Director, NVIDIA Deep Learning Institute Deep learning (DL) is a key component of today's exciting advances in machine learning and artificial intelligence. Learning Deep Learning is a complete guide to DL. Illuminating both the core concepts and the hands-on programming techniques needed to succeed, this book is ideal for developers, data scientists, analysts, and others--including those with no prior machine learning or statistics experience. After introducing the essential building blocks of deep neural networks, such as artificial neurons and fully connected, convolutional, and recurrent layers, Magnus Ekman shows how to use them to build advanced architectures, including the Transformer. He describes how these concepts are used to build modern networks for computer vision and natural language processing (NLP), including Mask R-CNN, GPT, and BERT. And he explains how a natural language translator and a system generating natural language descriptions of images. Throughout, Ekman provides concise, well-annotated code examples using TensorFlow with Keras. Corresponding PyTorch examples are provided online, and the book thereby covers the two dominating Python libraries for DL used in industry and academia. He concludes with an introduction to neural architecture search (NAS), exploring important ethical issues and providing resources for further learning. Explore and master core concepts: perceptrons, gradient-based learning, sigmoid neurons, and back propagation See how DL frameworks make it easier to develop more complicated and useful neural networks Discover how convolutional neural networks (CNNs) revolutionize image classification and analysis Apply recurrent neural networks (RNNs) and long short-term memory (LSTM) to text and other variable-length sequences Master NLP with sequence-to-sequence networks and the Transformer architecture Build applications for natural language translation and image captioning NVIDIA's invention of the GPU sparked the PC gaming market. The company's pioneering work in accelerated computing--a supercharged form of computing at the intersection of computer graphics, high-performance computing, and AI--is reshaping trillion-dollar industries, such as transportation, healthcare, and manufacturing, and fueling the growth of many others. Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.



Better Deep Learning


Better Deep Learning
DOWNLOAD
Author : Jason Brownlee
language : en
Publisher: Machine Learning Mastery
Release Date : 2018-12-13

Better Deep Learning written by Jason Brownlee and has been published by Machine Learning Mastery this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-13 with Computers categories.


Deep learning neural networks have become easy to define and fit, but are still hard to configure. Discover exactly how to improve the performance of deep learning neural network models on your predictive modeling projects. With clear explanations, standard Python libraries, and step-by-step tutorial lessons, you’ll discover how to better train your models, reduce overfitting, and make more accurate predictions.



Deep Learning With Python Second Edition


Deep Learning With Python Second Edition
DOWNLOAD
Author : Francois Chollet
language : en
Publisher: Simon and Schuster
Release Date : 2021-12-21

Deep Learning With Python Second Edition written by Francois Chollet and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-12-21 with Computers categories.


Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. You'll learn directly from the creator of Keras, François Chollet, building your understanding through intuitive explanations and practical examples. Updated from the original bestseller with over 50% new content, this second edition includes new chapters, cutting-edge innovations, and coverage of the very latest deep learning tools. You'll explore challenging concepts and practice with applications in computer vision, natural-language processing, and generative models. By the time you finish, you'll have the knowledge and hands-on skills to apply deep learning in your own projects.



Deep Learning For Dummies


Deep Learning For Dummies
DOWNLOAD
Author : John Paul Mueller
language : en
Publisher: John Wiley & Sons
Release Date : 2019-04-15

Deep Learning For Dummies written by John Paul Mueller and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-04-15 with Computers categories.


Take a deep dive into deep learning Deep learning provides the means for discerning patterns in the data that drive online business and social media outlets. Deep Learning for Dummies gives you the information you need to take the mystery out of the topic—and all of the underlying technologies associated with it. In no time, you’ll make sense of those increasingly confusing algorithms, and find a simple and safe environment to experiment with deep learning. The book develops a sense of precisely what deep learning can do at a high level and then provides examples of the major deep learning application types. Includes sample code Provides real-world examples within the approachable text Offers hands-on activities to make learning easier Shows you how to use Deep Learning more effectively with the right tools This book is perfect for those who want to better understand the basis of the underlying technologies that we use each and every day.



Deep Learning


Deep Learning
DOWNLOAD
Author : Stephane Tuffery
language : en
Publisher: John Wiley & Sons
Release Date : 2022-11-22

Deep Learning written by Stephane Tuffery and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-11-22 with Computers categories.


DEEP LEARNING A concise and practical exploration of key topics and applications in data science In Deep Learning: From Big Data to Artificial Intelligence with R, expert researcher Dr. Stéphane Tufféry delivers an insightful discussion of the applications of deep learning and big data that focuses on practical instructions on various software tools and deep learning methods relying on three major libraries: MXNet, PyTorch, and Keras-TensorFlow. In the book, numerous, up-to-date examples are combined with key topics relevant to modern data scientists, including processing optimization, neural network applications, natural language processing, and image recognition. This is a thoroughly revised and updated edition of a book originally released in French, with new examples and methods included throughout. Classroom-tested and intuitively organized, Deep Learning: From Big Data to Artificial Intelligence with R offers complimentary access to a companion website that provides R and Python source code for the examples offered in the book. Readers will also find: A thorough introduction to practical deep learning techniques with explanations and examples for various programming libraries Comprehensive explorations of a variety of applications for deep learning, including image recognition and natural language processing Discussions of the theory of deep learning, neural networks, and artificial intelligence linked to concrete techniques and strategies commonly used to solve real-world problems Perfect for graduate students studying data science, big data, deep learning, and artificial intelligence, Deep Learning: From Big Data to Artificial Intelligence with R will also earn a place in the libraries of data science researchers and practicing data scientists.



Introduction To Deep Learning


Introduction To Deep Learning
DOWNLOAD
Author : Eugene Charniak
language : en
Publisher: MIT Press
Release Date : 2019-01-29

Introduction To Deep Learning written by Eugene Charniak and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-01-29 with Computers categories.


A project-based guide to the basics of deep learning. This concise, project-driven guide to deep learning takes readers through a series of program-writing tasks that introduce them to the use of deep learning in such areas of artificial intelligence as computer vision, natural-language processing, and reinforcement learning. The author, a longtime artificial intelligence researcher specializing in natural-language processing, covers feed-forward neural nets, convolutional neural nets, word embeddings, recurrent neural nets, sequence-to-sequence learning, deep reinforcement learning, unsupervised models, and other fundamental concepts and techniques. Students and practitioners learn the basics of deep learning by working through programs in Tensorflow, an open-source machine learning framework. “I find I learn computer science material best by sitting down and writing programs,” the author writes, and the book reflects this approach. Each chapter includes a programming project, exercises, and references for further reading. An early chapter is devoted to Tensorflow and its interface with Python, the widely used programming language. Familiarity with linear algebra, multivariate calculus, and probability and statistics is required, as is a rudimentary knowledge of programming in Python. The book can be used in both undergraduate and graduate courses; practitioners will find it an essential reference.



Hands On Deep Learning Architectures With Python


Hands On Deep Learning Architectures With Python
DOWNLOAD
Author : Yuxi (Hayden) Liu
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-04-30

Hands On Deep Learning Architectures With Python written by Yuxi (Hayden) Liu and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-04-30 with Computers categories.


Concepts, tools, and techniques to explore deep learning architectures and methodologies Key FeaturesExplore advanced deep learning architectures using various datasets and frameworksImplement deep architectures for neural network models such as CNN, RNN, GAN, and many moreDiscover design patterns and different challenges for various deep learning architecturesBook Description Deep learning architectures are composed of multilevel nonlinear operations that represent high-level abstractions; this allows you to learn useful feature representations from the data. This book will help you learn and implement deep learning architectures to resolve various deep learning research problems. Hands-On Deep Learning Architectures with Python explains the essential learning algorithms used for deep and shallow architectures. Packed with practical implementations and ideas to help you build efficient artificial intelligence systems (AI), this book will help you learn how neural networks play a major role in building deep architectures. You will understand various deep learning architectures (such as AlexNet, VGG Net, GoogleNet) with easy-to-follow code and diagrams. In addition to this, the book will also guide you in building and training various deep architectures such as the Boltzmann mechanism, autoencoders, convolutional neural networks (CNNs), recurrent neural networks (RNNs), natural language processing (NLP), GAN, and more—all with practical implementations. By the end of this book, you will be able to construct deep models using popular frameworks and datasets with the required design patterns for each architecture. You will be ready to explore the potential of deep architectures in today's world. What you will learnImplement CNNs, RNNs, and other commonly used architectures with PythonExplore architectures such as VGGNet, AlexNet, and GoogLeNetBuild deep learning architectures for AI applications such as face and image recognition, fraud detection, and many moreUnderstand the architectures and applications of Boltzmann machines and autoencoders with concrete examples Master artificial intelligence and neural network concepts and apply them to your architectureUnderstand deep learning architectures for mobile and embedded systemsWho this book is for If you’re a data scientist, machine learning developer/engineer, or deep learning practitioner, or are curious about AI and want to upgrade your knowledge of various deep learning architectures, this book will appeal to you. You are expected to have some knowledge of statistics and machine learning algorithms to get the best out of this book