[PDF] Artificial Intelligence And Machine Learning In Drug Design And Development - eBooks Review

Artificial Intelligence And Machine Learning In Drug Design And Development


Artificial Intelligence And Machine Learning In Drug Design And Development
DOWNLOAD

Download Artificial Intelligence And Machine Learning In Drug Design And Development PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Artificial Intelligence And Machine Learning In Drug Design And Development book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Artificial Intelligence And Machine Learning In Drug Design And Development


Artificial Intelligence And Machine Learning In Drug Design And Development
DOWNLOAD
Author : Abhirup Khanna
language : en
Publisher: John Wiley & Sons
Release Date : 2024-06-21

Artificial Intelligence And Machine Learning In Drug Design And Development written by Abhirup Khanna and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-06-21 with Computers categories.


The book is a comprehensive guide that explores the use of artificial intelligence and machine learning in drug discovery and development covering a range of topics, including the use of molecular modeling, docking, identifying targets, selecting compounds, and optimizing drugs. The intersection of Artificial Intelligence (AI) and Machine Learning (ML) within the field of drug design and development represents a pivotal moment in the history of healthcare and pharmaceuticals. The remarkable synergy between cutting-edge technology and the life sciences has ushered in a new era of possibilities, offering unprecedented opportunities, formidable challenges, and a tantalizing glimpse into the future of medicine. AI can be applied to all the key areas of the pharmaceutical industry, such as drug discovery and development, drug repurposing, and improving productivity within a short period. Contemporary methods have shown promising results in facilitating the discovery of drugs to target different diseases. Moreover, AI helps in predicting the efficacy and safety of molecules and gives researchers a much broader chemical pallet for the selection of the best molecules for drug testing and delivery. In this context, drug repurposing is another important topic where AI can have a substantial impact. With the vast amount of clinical and pharmaceutical data available to date, AI algorithms find suitable drugs that can be repurposed for alternative use in medicine. This book is a comprehensive exploration of this dynamic and rapidly evolving field. In an era where precision and efficiency are paramount in drug discovery, AI and ML have emerged as transformative tools, reshaping the way we identify, design, and develop pharmaceuticals. This book is a testament to the profound impact these technologies have had and will continue to have on the pharmaceutical industry, healthcare, and ultimately, patient well-being. The editors of this volume have assembled a distinguished group of experts, researchers, and thought leaders from both the AI, ML, and pharmaceutical domains. Their collective knowledge and insights illuminate the multifaceted landscape of AI and ML in drug design and development, offering a roadmap for navigating its complexities and harnessing its potential. In each section, readers will find a rich tapestry of knowledge, case studies, and expert opinions, providing a 360-degree view of AI and ML’s role in drug design and development. Whether you are a researcher, scientist, industry professional, policymaker, or simply curious about the future of medicine, this book offers 19 state-of-the-art chapters providing valuable insights and a compass to navigate the exciting journey ahead. Audience The book is a valuable resource for a wide range of professionals in the pharmaceutical and allied industries including researchers, scientists, engineers, and laboratory workers in the field of drug discovery and development, who want to learn about the latest techniques in machine learning and AI, as well as information technology professionals who are interested in the application of machine learning and artificial intelligence in drug development.



Artificial Intelligence And Machine Learning In Healthcare


Artificial Intelligence And Machine Learning In Healthcare
DOWNLOAD
Author : Ankur Saxena
language : en
Publisher: Springer Nature
Release Date : 2021-05-06

Artificial Intelligence And Machine Learning In Healthcare written by Ankur Saxena and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-05-06 with Science categories.


This book reviews the application of artificial intelligence and machine learning in healthcare. It discusses integrating the principles of computer science, life science, and statistics incorporated into statistical models using existing data, discovering patterns in data to extract the information, and predicting the changes and diseases based on this data and models. The initial chapters of the book cover the practical applications of artificial intelligence for disease prognosis & management. Further, the role of artificial intelligence and machine learning is discussed with reference to specific diseases like diabetes mellitus, cancer, mycobacterium tuberculosis, and Covid-19. The chapters provide working examples on how different types of healthcare data can be used to develop models and predict diseases using machine learning and artificial intelligence. The book also touches upon precision medicine, personalized medicine, and transfer learning, with the real examples. Further, it also discusses the use of machine learning and artificial intelligence for visualization, prediction, detection, and diagnosis of Covid -19. This book is a valuable source of information for programmers, healthcare professionals, and researchers interested in understanding the applications of artificial intelligence and machine learning in healthcare.



A Handbook Of Artificial Intelligence In Drug Delivery


A Handbook Of Artificial Intelligence In Drug Delivery
DOWNLOAD
Author : Anil K. Philip
language : en
Publisher: Elsevier
Release Date : 2023-03-29

A Handbook Of Artificial Intelligence In Drug Delivery written by Anil K. Philip and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-03-29 with Business & Economics categories.


A Handbook of Artificial Intelligence in Drug Delivery explores the use of Artificial Intelligence (AI) in drug delivery strategies. The book covers pharmaceutical AI and drug discovery challenges, Artificial Intelligence tools for drug research, AI enabled intelligent drug delivery systems and next generation novel therapeutics, broad utility of AI for designing novel micro/nanosystems for drug delivery, AI driven personalized medicine and Gene therapy, 3D Organ printing and tissue engineering, Advanced nanosystems based on AI principles (nanorobots, nanomachines), opportunities and challenges using artificial intelligence in ADME/Tox in drug development, commercialization and regulatory perspectives, ethics in AI, and more. This book will be useful to academic and industrial researchers interested in drug delivery, chemical biology, computational chemistry, medicinal chemistry and bioinformatics. The massive time and costs investments in drug research and development necessitate application of more innovative techniques and smart strategies. Focuses on the use of Artificial Intelligence in drug delivery strategies and future impacts Provides insights into how artificial intelligence can be effectively used for the development of advanced drug delivery systems Written by experts in the field of advanced drug delivery systems and digital health



Artificial Intelligence In Healthcare


Artificial Intelligence In Healthcare
DOWNLOAD
Author : Adam Bohr
language : en
Publisher: Academic Press
Release Date : 2020-06-21

Artificial Intelligence In Healthcare written by Adam Bohr and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-21 with Computers categories.


Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data



Healthcare And Artificial Intelligence


Healthcare And Artificial Intelligence
DOWNLOAD
Author : Bernard Nordlinger
language : en
Publisher: Springer Nature
Release Date : 2020-03-17

Healthcare And Artificial Intelligence written by Bernard Nordlinger and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-17 with Technology & Engineering categories.


This book provides an overview of the role of AI in medicine and, more generally, of issues at the intersection of mathematics, informatics, and medicine. It is intended for AI experts, offering them a valuable retrospective and a global vision for the future, as well as for non-experts who are curious about this timely and important subject. Its goal is to provide clear, objective, and reasonable information on the issues covered, avoiding any fantasies that the topic “AI” might evoke. In addition, the book seeks to provide a broad kaleidoscopic perspective, rather than deep technical details.



Deep Learning For The Life Sciences


Deep Learning For The Life Sciences
DOWNLOAD
Author : Bharath Ramsundar
language : en
Publisher: O'Reilly Media
Release Date : 2019-04-10

Deep Learning For The Life Sciences written by Bharath Ramsundar and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-04-10 with Science categories.


Deep learning has already achieved remarkable results in many fields. Now it’s making waves throughout the sciences broadly and the life sciences in particular. This practical book teaches developers and scientists how to use deep learning for genomics, chemistry, biophysics, microscopy, medical analysis, and other fields. Ideal for practicing developers and scientists ready to apply their skills to scientific applications such as biology, genetics, and drug discovery, this book introduces several deep network primitives. You’ll follow a case study on the problem of designing new therapeutics that ties together physics, chemistry, biology, and medicine—an example that represents one of science’s greatest challenges. Learn the basics of performing machine learning on molecular data Understand why deep learning is a powerful tool for genetics and genomics Apply deep learning to understand biophysical systems Get a brief introduction to machine learning with DeepChem Use deep learning to analyze microscopic images Analyze medical scans using deep learning techniques Learn about variational autoencoders and generative adversarial networks Interpret what your model is doing and how it’s working



The Future Of Pharmaceutical Product Development And Research


The Future Of Pharmaceutical Product Development And Research
DOWNLOAD
Author :
language : en
Publisher: Academic Press
Release Date : 2020-08-19

The Future Of Pharmaceutical Product Development And Research written by and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-19 with Medical categories.


The Future of Pharmaceutical Product Development and Research examines the latest developments in the pharmaceutical sciences, also highlighting key developments, research and future opportunities. Written by experts in the field, this volume in the Advances in Pharmaceutical Product Development and Research series deepens our understanding of the product development phase of drug discovery and drug development. Each chapter covers fundamental principles, advanced methodologies and technologies employed by pharmaceutical scientists, researchers and the pharmaceutical industry. The book focuses on excipients, radiopharmaceuticals, and how manufacturing should be conducted in an environment that follows Good Manufacturing Practice (GMP) guidelines. Researchers and students will find this book to be a comprehensive resource for those working in, and studying, pharmaceuticals, cosmetics, biotechnology, foods and related industries.



Machine Learning In Chemistry


Machine Learning In Chemistry
DOWNLOAD
Author : Edward O. Pyzer-Knapp
language : en
Publisher:
Release Date : 2019

Machine Learning In Chemistry written by Edward O. Pyzer-Knapp and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019 with Chemistry categories.




2021 International Conference On Computer Communication And Informatics Iccci


 2021 International Conference On Computer Communication And Informatics Iccci
DOWNLOAD
Author :
language : en
Publisher:
Release Date :

2021 International Conference On Computer Communication And Informatics Iccci written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on with categories.




Drug Design Using Machine Learning


Drug Design Using Machine Learning
DOWNLOAD
Author : Inamuddin
language : en
Publisher: John Wiley & Sons
Release Date : 2022-11-22

Drug Design Using Machine Learning written by Inamuddin and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-11-22 with Medical categories.


DRUG DESIGN USING MACHINE LEARNING The use of machine learning algorithms in drug discovery has accelerated in recent years and this book provides an in-depth overview of the still-evolving field. The objective of this book is to bring together several chapters that function as an overview of the use of machine learning and artificial intelligence applied to drug development. The initial chapters discuss drug-target interactions through machine learning for improving drug delivery, healthcare, and medical systems. Further chapters also provide topics on drug repurposing through machine learning, drug designing, and ultimately discuss drug combinations prescribed for patients with multiple or complex ailments. This excellent overview Provides a broad synopsis of machine learning and artificial intelligence applications to the advancement of drugs; Details the use of molecular recognition for drug development through various mathematical models; Highlights classical as well as machine learning-based approaches to study target-drug interactions in the field of drug discovery; Explores computer-aided technics for prediction of drug effectiveness and toxicity. Audience The book will be useful for information technology professionals, pharmaceutical industry workers, engineers, university researchers, medical practitioners, and laboratory workers who have a keen interest in the area of machine learning and artificial intelligence approaches applied to drug advancements.