Artificial Intelligence Big Data And Data Science In Statistics

DOWNLOAD
Download Artificial Intelligence Big Data And Data Science In Statistics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Artificial Intelligence Big Data And Data Science In Statistics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Artificial Intelligence Big Data And Data Science In Statistics
DOWNLOAD
Author : Ansgar Steland
language : en
Publisher: Springer Nature
Release Date : 2022-11-15
Artificial Intelligence Big Data And Data Science In Statistics written by Ansgar Steland and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-11-15 with Mathematics categories.
This book discusses the interplay between statistics, data science, machine learning and artificial intelligence, with a focus on environmental science, the natural sciences, and technology. It covers the state of the art from both a theoretical and a practical viewpoint and describes how to successfully apply machine learning methods, demonstrating the benefits of statistics for modeling and analyzing high-dimensional and big data. The book’s expert contributions include theoretical studies of machine learning methods, expositions of general methodologies for sound statistical analyses of data as well as novel approaches to modeling and analyzing data for specific problems and areas. In terms of applications, the contributions deal with data as arising in industrial quality control, autonomous driving, transportation and traffic, chip manufacturing, photovoltaics, football, transmission of infectious diseases, Covid-19 and public health. The book will appeal to statisticians and data scientists, as well as engineers and computer scientists working in related fields or applications.
Big Data Analytics And Intelligence
DOWNLOAD
Author : Poonam Tanwar
language : en
Publisher: Emerald Group Publishing
Release Date : 2020-09-30
Big Data Analytics And Intelligence written by Poonam Tanwar and has been published by Emerald Group Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-30 with Business & Economics categories.
Big Data Analytics and Intelligence is essential reading for researchers and experts working in the fields of health care, data science, analytics, the internet of things, and information retrieval.
Handbook Of Financial Econometrics Mathematics Statistics And Machine Learning In 4 Volumes
DOWNLOAD
Author : Cheng Few Lee
language : en
Publisher: World Scientific
Release Date : 2020-07-30
Handbook Of Financial Econometrics Mathematics Statistics And Machine Learning In 4 Volumes written by Cheng Few Lee and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-30 with Business & Economics categories.
This four-volume handbook covers important concepts and tools used in the fields of financial econometrics, mathematics, statistics, and machine learning. Econometric methods have been applied in asset pricing, corporate finance, international finance, options and futures, risk management, and in stress testing for financial institutions. This handbook discusses a variety of econometric methods, including single equation multiple regression, simultaneous equation regression, and panel data analysis, among others. It also covers statistical distributions, such as the binomial and log normal distributions, in light of their applications to portfolio theory and asset management in addition to their use in research regarding options and futures contracts.In both theory and methodology, we need to rely upon mathematics, which includes linear algebra, geometry, differential equations, Stochastic differential equation (Ito calculus), optimization, constrained optimization, and others. These forms of mathematics have been used to derive capital market line, security market line (capital asset pricing model), option pricing model, portfolio analysis, and others.In recent times, an increased importance has been given to computer technology in financial research. Different computer languages and programming techniques are important tools for empirical research in finance. Hence, simulation, machine learning, big data, and financial payments are explored in this handbook.Led by Distinguished Professor Cheng Few Lee from Rutgers University, this multi-volume work integrates theoretical, methodological, and practical issues based on his years of academic and industry experience.
Data Science And Data Analytics
DOWNLOAD
Author : Amit Kumar Tyagi
language : en
Publisher: CRC Press
Release Date : 2021-09-22
Data Science And Data Analytics written by Amit Kumar Tyagi and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-22 with Computers categories.
Data science is a multi-disciplinary field that uses scientific methods, processes, algorithms, and systems to extract knowledge and insights from structured (labeled) and unstructured (unlabeled) data. It is the future of Artificial Intelligence (AI) and a necessity of the future to make things easier and more productive. In simple terms, data science is the discovery of data or uncovering hidden patterns (such as complex behaviors, trends, and inferences) from data. Moreover, Big Data analytics/data analytics are the analysis mechanisms used in data science by data scientists. Several tools, such as Hadoop, R, etc., are used to analyze this large amount of data to predict valuable information and for decision-making. Note that structured data can be easily analyzed by efficient (available) business intelligence tools, while most of the data (80% of data by 2020) is in an unstructured form that requires advanced analytics tools. But while analyzing this data, we face several concerns, such as complexity, scalability, privacy leaks, and trust issues. Data science helps us to extract meaningful information or insights from unstructured or complex or large amounts of data (available or stored virtually in the cloud). Data Science and Data Analytics: Opportunities and Challenges covers all possible areas, applications with arising serious concerns, and challenges in this emerging field in detail with a comparative analysis/taxonomy. FEATURES Gives the concept of data science, tools, and algorithms that exist for many useful applications Provides many challenges and opportunities in data science and data analytics that help researchers to identify research gaps or problems Identifies many areas and uses of data science in the smart era Applies data science to agriculture, healthcare, graph mining, education, security, etc. Academicians, data scientists, and stockbrokers from industry/business will find this book useful for designing optimal strategies to enhance their firm’s productivity.
Artificial Intelligence Trends For Data Analytics Using Machine Learning And Deep Learning Approaches
DOWNLOAD
Author : K. Gayathri Devi
language : en
Publisher:
Release Date : 2024-10-04
Artificial Intelligence Trends For Data Analytics Using Machine Learning And Deep Learning Approaches written by K. Gayathri Devi and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-10-04 with Computers categories.
This book focuses on the implementation of various elementary and advanced approaches in AI that can be used in various domains to solve real-time decision-making problems.
Science For Policy Handbook
DOWNLOAD
Author : Vladimir Sucha
language : en
Publisher: Elsevier
Release Date : 2020-07-15
Science For Policy Handbook written by Vladimir Sucha and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-15 with Business & Economics categories.
Science for Policy Handbook provides advice on how to bring science to the attention of policymakers. This resource is dedicated to researchers and research organizations aiming to achieve policy impacts. The book includes lessons learned along the way, advice on new skills, practices for individual researchers, elements necessary for institutional change, and knowledge areas and processes in which to invest. It puts co-creation at the centre of Science for Policy 2.0, a more integrated model of knowledge-policy relationship.
Artificial Intelligence In Society
DOWNLOAD
Author : OECD
language : en
Publisher: OECD Publishing
Release Date : 2019-06-11
Artificial Intelligence In Society written by OECD and has been published by OECD Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-11 with categories.
The artificial intelligence (AI) landscape has evolved significantly from 1950 when Alan Turing first posed the question of whether machines can think. Today, AI is transforming societies and economies. It promises to generate productivity gains, improve well-being and help address global challenges, such as climate change, resource scarcity and health crises.
Advances In Artificial Intelligence Big Data And Algorithms
DOWNLOAD
Author : Gheorghe Grigoras
language : en
Publisher: IOS Press
Release Date : 2023-12-15
Advances In Artificial Intelligence Big Data And Algorithms written by Gheorghe Grigoras and has been published by IOS Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-12-15 with Computers categories.
Computers and automation have revolutionized the lives of most people in the last two decades, and terminology such as algorithms, big data and artificial intelligence have become part of our everyday discourse. This book presents the proceedings of CAIBDA 2023, the 3rd International Conference on Artificial Intelligence, Big Data and Algorithms, held from 16 - 18 June 2023 as a hybrid conference in Zhengzhou, China. The conference provided a platform for some 200 participants to discuss the theoretical and computational aspects of research in artificial intelligence, big data and algorithms, reviewing the present status and future perspectives of the field. A total of 362 submissions were received for the conference, of which 148 were accepted following a thorough double-blind peer review. Topics covered at the conference included artificial intelligence tools and applications; intelligent estimation and classification; representation formats for multimedia big data; high-performance computing; and mathematical and computer modeling, among others. The book provides a comprehensive overview of this fascinating field, exploring future scenarios and highlighting areas where new ideas have emerged over recent years. It will be of interest to all those whose work involves artificial intelligence, big data and algorithms.
Blockchain Big Data And Machine Learning
DOWNLOAD
Author : Neeraj Kumar
language : en
Publisher: CRC Press
Release Date : 2020-09-24
Blockchain Big Data And Machine Learning written by Neeraj Kumar and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-24 with Computers categories.
Present book covers new paradigms in Blockchain, Big Data and Machine Learning concepts including applications and case studies. It explains dead fusion in realizing the privacy and security of blockchain based data analytic environment. Recent research of security based on big data, blockchain and machine learning has been explained through actual work by practitioners and researchers, including their technical evaluation and comparison with existing technologies. The theoretical background and experimental case studies related to real-time environment are covered as well. Aimed at Senior undergraduate students, researchers and professionals in computer science and engineering and electrical engineering, this book: Converges Blockchain, Big Data and Machine learning in one volume. Connects Blockchain technologies with the data centric applications such Big data and E-Health. Easy to understand examples on how to create your own blockchain supported by case studies of blockchain in different industries. Covers big data analytics examples using R. Includes lllustrative examples in python for blockchain creation.
Data Intensive Computing Applications For Big Data
DOWNLOAD
Author : M. Mittal
language : en
Publisher: IOS Press
Release Date : 2018-01-31
Data Intensive Computing Applications For Big Data written by M. Mittal and has been published by IOS Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-01-31 with Computers categories.
The book ‘Data Intensive Computing Applications for Big Data’ discusses the technical concepts of big data, data intensive computing through machine learning, soft computing and parallel computing paradigms. It brings together researchers to report their latest results or progress in the development of the above mentioned areas. Since there are few books on this specific subject, the editors aim to provide a common platform for researchers working in this area to exhibit their novel findings. The book is intended as a reference work for advanced undergraduates and graduate students, as well as multidisciplinary, interdisciplinary and transdisciplinary research workers and scientists on the subjects of big data and cloud/parallel and distributed computing, and explains didactically many of the core concepts of these approaches for practical applications. It is organized into 24 chapters providing a comprehensive overview of big data analysis using parallel computing and addresses the complete data science workflow in the cloud, as well as dealing with privacy issues and the challenges faced in a data-intensive cloud computing environment. The book explores both fundamental and high-level concepts, and will serve as a manual for those in the industry, while also helping beginners to understand the basic and advanced aspects of big data and cloud computing.