Artificial Intelligence By Example Second Edition

DOWNLOAD
Download Artificial Intelligence By Example Second Edition PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Artificial Intelligence By Example Second Edition book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Artificial Intelligence By Example Second Edition
DOWNLOAD
Author : Denis Rothman
language : en
Publisher:
Release Date : 2020-02-28
Artificial Intelligence By Example Second Edition written by Denis Rothman and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-02-28 with Computers categories.
Artificial Intelligence By Example
DOWNLOAD
Author : Denis Rothman
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-05-31
Artificial Intelligence By Example written by Denis Rothman and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-05-31 with Computers categories.
Be an adaptive thinker that leads the way to Artificial Intelligence Key Features AI-based examples to guide you in designing and implementing machine intelligence Develop your own method for future AI solutions Acquire advanced AI, machine learning, and deep learning design skills Book Description Artificial Intelligence has the potential to replicate humans in every field. This book serves as a starting point for you to understand how AI is built, with the help of intriguing examples and case studies. Artificial Intelligence By Example will make you an adaptive thinker and help you apply concepts to real-life scenarios. Using some of the most interesting AI examples, right from a simple chess engine to a cognitive chatbot, you will learn how to tackle the machine you are competing with. You will study some of the most advanced machine learning models, understand how to apply AI to blockchain and IoT, and develop emotional quotient in chatbots using neural networks. You will move on to designing AI solutions in a simple manner rather than get confused by complex architectures and techniques. This comprehensive guide will be a starter kit for you to develop AI applications on your own. By the end of this book, will have understood the fundamentals of AI and worked through a number of case studies that will help you develop business vision. What you will learn Use adaptive thinking to solve real-life AI case studies Rise beyond being a modern-day factory code worker Acquire advanced AI, machine learning, and deep learning designing skills Learn about cognitive NLP chatbots, quantum computing, and IoT and blockchain technology Understand future AI solutions and adapt quickly to them Develop out-of-the-box thinking to face any challenge the market presents Who this book is for Artificial Intelligence by Example is a simple, explanatory, and descriptive guide for junior developers, experienced developers, technology consultants, and those interested in AI who want to understand the fundamentals of Artificial Intelligence and implement it practically by devising smart solutions. Prior experience with Python and statistical knowledge is essential to make the most out of this book.
Introduction To Artificial Intelligence
DOWNLOAD
Author : Wolfgang Ertel
language : en
Publisher: Springer
Release Date : 2018-01-18
Introduction To Artificial Intelligence written by Wolfgang Ertel and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-01-18 with Computers categories.
This accessible and engaging textbook presents a concise introduction to the exciting field of artificial intelligence (AI). The broad-ranging discussion covers the key subdisciplines within the field, describing practical algorithms and concrete applications in the areas of agents, logic, search, reasoning under uncertainty, machine learning, neural networks, and reinforcement learning. Fully revised and updated, this much-anticipated second edition also includes new material on deep learning. Topics and features: presents an application-focused and hands-on approach to learning, with supplementary teaching resources provided at an associated website; contains numerous study exercises and solutions, highlighted examples, definitions, theorems, and illustrative cartoons; includes chapters on predicate logic, PROLOG, heuristic search, probabilistic reasoning, machine learning and data mining, neural networks and reinforcement learning; reports on developments in deep learning, including applications of neural networks to generate creative content such as text, music and art (NEW); examines performance evaluation of clustering algorithms, and presents two practical examples explaining Bayes’ theorem and its relevance in everyday life (NEW); discusses search algorithms, analyzing the cycle check, explaining route planning for car navigation systems, and introducing Monte Carlo Tree Search (NEW); includes a section in the introduction on AI and society, discussing the implications of AI on topics such as employment and transportation (NEW). Ideal for foundation courses or modules on AI, this easy-to-read textbook offers an excellent overview of the field for students of computer science and other technical disciplines, requiring no more than a high-school level of knowledge of mathematics to understand the material.
Artificial Intelligence With Python
DOWNLOAD
Author : Alberto Artasanchez
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-01-31
Artificial Intelligence With Python written by Alberto Artasanchez and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-31 with Computers categories.
New edition of the bestselling guide to artificial intelligence with Python, updated to Python 3.x, with seven new chapters that cover RNNs, AI and Big Data, fundamental use cases, chatbots, and more. Key FeaturesCompletely updated and revised to Python 3.xNew chapters for AI on the cloud, recurrent neural networks, deep learning models, and feature selection and engineeringLearn more about deep learning algorithms, machine learning data pipelines, and chatbotsBook Description Artificial Intelligence with Python, Second Edition is an updated and expanded version of the bestselling guide to artificial intelligence using the latest version of Python 3.x. Not only does it provide you an introduction to artificial intelligence, this new edition goes further by giving you the tools you need to explore the amazing world of intelligent apps and create your own applications. This edition also includes seven new chapters on more advanced concepts of Artificial Intelligence, including fundamental use cases of AI; machine learning data pipelines; feature selection and feature engineering; AI on the cloud; the basics of chatbots; RNNs and DL models; and AI and Big Data. Finally, this new edition explores various real-world scenarios and teaches you how to apply relevant AI algorithms to a wide swath of problems, starting with the most basic AI concepts and progressively building from there to solve more difficult challenges so that by the end, you will have gained a solid understanding of, and when best to use, these many artificial intelligence techniques. What you will learnUnderstand what artificial intelligence, machine learning, and data science areExplore the most common artificial intelligence use casesLearn how to build a machine learning pipelineAssimilate the basics of feature selection and feature engineeringIdentify the differences between supervised and unsupervised learningDiscover the most recent advances and tools offered for AI development in the cloudDevelop automatic speech recognition systems and chatbotsApply AI algorithms to time series dataWho this book is for The intended audience for this book is Python developers who want to build real-world Artificial Intelligence applications. Basic Python programming experience and awareness of machine learning concepts and techniques is mandatory.
Machine Learning With Tensorflow Second Edition
DOWNLOAD
Author : Mattmann A. Chris
language : en
Publisher: Manning
Release Date : 2021-02-02
Machine Learning With Tensorflow Second Edition written by Mattmann A. Chris and has been published by Manning this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-02-02 with Computers categories.
Updated with new code, new projects, and new chapters, Machine Learning with TensorFlow, Second Edition gives readers a solid foundation in machine-learning concepts and the TensorFlow library. Summary Updated with new code, new projects, and new chapters, Machine Learning with TensorFlow, Second Edition gives readers a solid foundation in machine-learning concepts and the TensorFlow library. Written by NASA JPL Deputy CTO and Principal Data Scientist Chris Mattmann, all examples are accompanied by downloadable Jupyter Notebooks for a hands-on experience coding TensorFlow with Python. New and revised content expands coverage of core machine learning algorithms, and advancements in neural networks such as VGG-Face facial identification classifiers and deep speech classifiers. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Supercharge your data analysis with machine learning! ML algorithms automatically improve as they process data, so results get better over time. You don’t have to be a mathematician to use ML: Tools like Google’s TensorFlow library help with complex calculations so you can focus on getting the answers you need. About the book Machine Learning with TensorFlow, Second Edition is a fully revised guide to building machine learning models using Python and TensorFlow. You’ll apply core ML concepts to real-world challenges, such as sentiment analysis, text classification, and image recognition. Hands-on examples illustrate neural network techniques for deep speech processing, facial identification, and auto-encoding with CIFAR-10. What's inside Machine Learning with TensorFlow Choosing the best ML approaches Visualizing algorithms with TensorBoard Sharing results with collaborators Running models in Docker About the reader Requires intermediate Python skills and knowledge of general algebraic concepts like vectors and matrices. Examples use the super-stable 1.15.x branch of TensorFlow and TensorFlow 2.x. About the author Chris Mattmann is the Division Manager of the Artificial Intelligence, Analytics, and Innovation Organization at NASA Jet Propulsion Lab. The first edition of this book was written by Nishant Shukla with Kenneth Fricklas. Table of Contents PART 1 - YOUR MACHINE-LEARNING RIG 1 A machine-learning odyssey 2 TensorFlow essentials PART 2 - CORE LEARNING ALGORITHMS 3 Linear regression and beyond 4 Using regression for call-center volume prediction 5 A gentle introduction to classification 6 Sentiment classification: Large movie-review dataset 7 Automatically clustering data 8 Inferring user activity from Android accelerometer data 9 Hidden Markov models 10 Part-of-speech tagging and word-sense disambiguation PART 3 - THE NEURAL NETWORK PARADIGM 11 A peek into autoencoders 12 Applying autoencoders: The CIFAR-10 image dataset 13 Reinforcement learning 14 Convolutional neural networks 15 Building a real-world CNN: VGG-Face ad VGG-Face Lite 16 Recurrent neural networks 17 LSTMs and automatic speech recognition 18 Sequence-to-sequence models for chatbots 19 Utility landscape
Hands On Machine Learning With Scikit Learn Keras And Tensorflow
DOWNLOAD
Author : Aurélien Géron
language : en
Publisher: O'Reilly Media
Release Date : 2019-09-05
Hands On Machine Learning With Scikit Learn Keras And Tensorflow written by Aurélien Géron and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-05 with Computers categories.
Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started. Explore the machine learning landscape, particularly neural nets Use Scikit-Learn to track an example machine-learning project end-to-end Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods Use the TensorFlow library to build and train neural nets Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning Learn techniques for training and scaling deep neural nets
Interpretable Machine Learning
DOWNLOAD
Author : Christoph Molnar
language : en
Publisher: Lulu.com
Release Date : 2020
Interpretable Machine Learning written by Christoph Molnar and has been published by Lulu.com this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Computers categories.
This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.
Artificial Intelligence By Example
DOWNLOAD
Author : Denis Rothman
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-02-28
Artificial Intelligence By Example written by Denis Rothman and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-02-28 with Computers categories.
Understand the fundamentals and develop your own AI solutions in this updated edition packed with many new examples Key FeaturesAI-based examples to guide you in designing and implementing machine intelligenceBuild machine intelligence from scratch using artificial intelligence examplesDevelop machine intelligence from scratch using real artificial intelligenceBook Description AI has the potential to replicate humans in every field. Artificial Intelligence By Example, Second Edition serves as a starting point for you to understand how AI is built, with the help of intriguing and exciting examples. This book will make you an adaptive thinker and help you apply concepts to real-world scenarios. Using some of the most interesting AI examples, right from computer programs such as a simple chess engine to cognitive chatbots, you will learn how to tackle the machine you are competing with. You will study some of the most advanced machine learning models, understand how to apply AI to blockchain and Internet of Things (IoT), and develop emotional quotient in chatbots using neural networks such as recurrent neural networks (RNNs) and convolutional neural networks (CNNs). This edition also has new examples for hybrid neural networks, combining reinforcement learning (RL) and deep learning (DL), chained algorithms, combining unsupervised learning with decision trees, random forests, combining DL and genetic algorithms, conversational user interfaces (CUI) for chatbots, neuromorphic computing, and quantum computing. By the end of this book, you will understand the fundamentals of AI and have worked through a number of examples that will help you develop your AI solutions. What you will learnApply k-nearest neighbors (KNN) to language translations and explore the opportunities in Google TranslateUnderstand chained algorithms combining unsupervised learning with decision treesSolve the XOR problem with feedforward neural networks (FNN) and build its architecture to represent a data flow graphLearn about meta learning models with hybrid neural networksCreate a chatbot and optimize its emotional intelligence deficiencies with tools such as Small Talk and data loggingBuilding conversational user interfaces (CUI) for chatbotsWriting genetic algorithms that optimize deep learning neural networksBuild quantum computing circuitsWho this book is for Developers and those interested in AI, who want to understand the fundamentals of Artificial Intelligence and implement them practically. Prior experience with Python programming and statistical knowledge is essential to make the most out of this book.
Artificial Intelligence With Uncertainty
DOWNLOAD
Author : Deyi Li
language : en
Publisher: CRC Press
Release Date : 2017-05-18
Artificial Intelligence With Uncertainty written by Deyi Li and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-05-18 with Mathematics categories.
This book develops a framework that shows how uncertainty in Artificial Intelligence (AI) expands and generalizes traditional AI. It explores the uncertainties of knowledge and intelligence. The authors focus on the importance of natural language – the carrier of knowledge and intelligence, and introduce efficient physical methods for data mining amd control. In this new edition, we have more in-depth description of the models and methods, of which the mathematical properties are proved strictly which make these theories and methods more complete. The authors also highlight their latest research results.