Artificial Neural Networks

DOWNLOAD
Download Artificial Neural Networks PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Artificial Neural Networks book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Artificial Neural Networks The Brain Behind Ai
DOWNLOAD
Author : Jayesh Ahire
language : en
Publisher: Lulu.com
Release Date : 2018-03-24
Artificial Neural Networks The Brain Behind Ai written by Jayesh Ahire and has been published by Lulu.com this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-03-24 with Computers categories.
Neural networks are one of the most popular and powerful classes of machine learning algorithms. In quantitative finance neural networks are often used for time-series forecasting, constructing proprietary indicators, algorithmic trading, securities classification and credit risk modeling. They have also been used to construct stochastic process models and price derivatives. Despite their usefulness, neural networks tend to have a bad reputation because their performance is "temperamental". In my opinion, this can be attributed to poor network design owing to misconceptions regarding how neural networks work. This book discusses every aspect of the artificial neural network in very interactive, practical and simple way.
Artificial Neural Networks
DOWNLOAD
Author : Robert J. Schalkoff
language : en
Publisher: McGraw-Hill Science, Engineering & Mathematics
Release Date : 1997
Artificial Neural Networks written by Robert J. Schalkoff and has been published by McGraw-Hill Science, Engineering & Mathematics this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997 with Computers categories.
While the primary objective of the text is to provide a teaching tool, practicing engineers and scientists are likely to find the clear, concept-based treatment useful in updating their backgrounds.
Neural Networks With R
DOWNLOAD
Author : Giuseppe Ciaburro
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-09-27
Neural Networks With R written by Giuseppe Ciaburro and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-27 with Computers categories.
Uncover the power of artificial neural networks by implementing them through R code. About This Book Develop a strong background in neural networks with R, to implement them in your applications Build smart systems using the power of deep learning Real-world case studies to illustrate the power of neural network models Who This Book Is For This book is intended for anyone who has a statistical background with knowledge in R and wants to work with neural networks to get better results from complex data. If you are interested in artificial intelligence and deep learning and you want to level up, then this book is what you need! What You Will Learn Set up R packages for neural networks and deep learning Understand the core concepts of artificial neural networks Understand neurons, perceptrons, bias, weights, and activation functions Implement supervised and unsupervised machine learning in R for neural networks Predict and classify data automatically using neural networks Evaluate and fine-tune the models you build. In Detail Neural networks are one of the most fascinating machine learning models for solving complex computational problems efficiently. Neural networks are used to solve wide range of problems in different areas of AI and machine learning. This book explains the niche aspects of neural networking and provides you with foundation to get started with advanced topics. The book begins with neural network design using the neural net package, then you'll build a solid foundation knowledge of how a neural network learns from data, and the principles behind it. This book covers various types of neural network including recurrent neural networks and convoluted neural networks. You will not only learn how to train neural networks, but will also explore generalization of these networks. Later we will delve into combining different neural network models and work with the real-world use cases. By the end of this book, you will learn to implement neural network models in your applications with the help of practical examples in the book. Style and approach A step-by-step guide filled with real-world practical examples.
Principles Of Artificial Neural Networks 3rd Edition
DOWNLOAD
Author : Daniel Graupe
language : en
Publisher: World Scientific
Release Date : 2013-07-31
Principles Of Artificial Neural Networks 3rd Edition written by Daniel Graupe and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-07-31 with Computers categories.
Artificial neural networks are most suitable for solving problems that are complex, ill-defined, highly nonlinear, of many and different variables, and/or stochastic. Such problems are abundant in medicine, in finance, in security and beyond.This volume covers the basic theory and architecture of the major artificial neural networks. Uniquely, it presents 18 complete case studies of applications of neural networks in various fields, ranging from cell-shape classification to micro-trading in finance and to constellation recognition — all with their respective source codes. These case studies demonstrate to the readers in detail how such case studies are designed and executed and how their specific results are obtained.The book is written for a one-semester graduate or senior-level undergraduate course on artificial neural networks. It is also intended to be a self-study and a reference text for scientists, engineers and for researchers in medicine, finance and data mining.
Artificial Neural Networks
DOWNLOAD
Author : Joao Luis Garcia Rosa
language : en
Publisher: BoD – Books on Demand
Release Date : 2016-10-19
Artificial Neural Networks written by Joao Luis Garcia Rosa and has been published by BoD – Books on Demand this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-10-19 with Computers categories.
The idea of simulating the brain was the goal of many pioneering works in Artificial Intelligence. The brain has been seen as a neural network, or a set of nodes, or neurons, connected by communication lines. Currently, there has been increasing interest in the use of neural network models. This book contains chapters on basic concepts of artificial neural networks, recent connectionist architectures and several successful applications in various fields of knowledge, from assisted speech therapy to remote sensing of hydrological parameters, from fabric defect classification to application in civil engineering. This is a current book on Artificial Neural Networks and Applications, bringing recent advances in the area to the reader interested in this always-evolving machine learning technique.
Artificial Neural Networks
DOWNLOAD
Author : Kevin L. Priddy
language : en
Publisher: SPIE Press
Release Date : 2005
Artificial Neural Networks written by Kevin L. Priddy and has been published by SPIE Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005 with Computers categories.
This tutorial text provides the reader with an understanding of artificial neural networks (ANNs), and their application, beginning with the biological systems which inspired them, through the learning methods that have been developed, and the data collection processes, to the many ways ANNs are being used today. The material is presented with a minimum of math (although the mathematical details are included in the appendices for interested readers), and with a maximum of hands-on experience. All specialized terms are included in a glossary. The result is a highly readable text that will teach the engineer the guiding principles necessary to use and apply artificial neural networks.
Understanding 99 Of Artificial Neural Networks
DOWNLOAD
Author : Marcelo Bosque
language : en
Publisher: Writers Club Press
Release Date : 2002-03
Understanding 99 Of Artificial Neural Networks written by Marcelo Bosque and has been published by Writers Club Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002-03 with Computers categories.
There is a deep desire in men, in order to reproduce intelligence and place it in a machine. Neural Networks are an attempt to reproduce the synaptic connections of our brain in a computer. Duplicating the way we use our neurons to think in a machine, it is expected to have a device that could be able to do "intelligent" tasks, the ones reserved just to humans some time ago. Neural Network are a reality now, not a fantasy, and they have been made in order to recognize patterns (a face ,a photograph or a song, are patterns) and forecast trends. I have seen many books about this subject in my life. All of them are hard to read, and tedious to learn, so I decided to make my own one. For beginner readers, I have tried to use a simple language, in order to be understood by anyone who wants to know about nets. An easy to read, practical and concise work. If you are interested in the brain functions and how can we simulate it in a computer, you'll get here a different way to penetrate into their secrets.For advanced readers who want to make their own nets, I have included a methodology for building neural networks and complete sample computer source-code with tricks that will save you a lot of time while designing it.
Elements Of Artificial Neural Networks
DOWNLOAD
Author : Kishan Mehrotra
language : en
Publisher: MIT Press
Release Date : 1997
Elements Of Artificial Neural Networks written by Kishan Mehrotra and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997 with Computers categories.
Elements of Artificial Neural Networks provides a clearly organized general introduction, focusing on a broad range of algorithms, for students and others who want to use neural networks rather than simply study them. The authors, who have been developing and team teaching the material in a one-semester course over the past six years, describe most of the basic neural network models (with several detailed solved examples) and discuss the rationale and advantages of the models, as well as their limitations. The approach is practical and open-minded and requires very little mathematical or technical background. Written from a computer science and statistics point of view, the text stresses links to contiguous fields and can easily serve as a first course for students in economics and management. The opening chapter sets the stage, presenting the basic concepts in a clear and objective way and tackling important -- yet rarely addressed -- questions related to the use of neural networks in practical situations. Subsequent chapters on supervised learning (single layer and multilayer networks), unsupervised learning, and associative models are structured around classes of problems to which networks can be applied. Applications are discussed along with the algorithms. A separate chapter takes up optimization methods. The most frequently used algorithms, such as backpropagation, are introduced early on, right after perceptrons, so that these can form the basis for initiating course projects. Algorithms published as late as 1995 are also included. All of the algorithms are presented using block-structured pseudo-code, and exercises are provided throughout. Software implementing many commonly used neural network algorithms is available at the book's website. Transparency masters, including abbreviated text and figures for the entire book, are available for instructors using the text.
Principles Of Artificial Neural Networks Basic Designs To Deep Learning 4th Edition
DOWNLOAD
Author : Daniel Graupe
language : en
Publisher: World Scientific
Release Date : 2019-03-15
Principles Of Artificial Neural Networks Basic Designs To Deep Learning 4th Edition written by Daniel Graupe and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-03-15 with Computers categories.
The field of Artificial Neural Networks is the fastest growing field in Information Technology and specifically, in Artificial Intelligence and Machine Learning.This must-have compendium presents the theory and case studies of artificial neural networks. The volume, with 4 new chapters, updates the earlier edition by highlighting recent developments in Deep-Learning Neural Networks, which are the recent leading approaches to neural networks. Uniquely, the book also includes case studies of applications of neural networks — demonstrating how such case studies are designed, executed and how their results are obtained.The title is written for a one-semester graduate or senior-level undergraduate course on artificial neural networks. It is also intended to be a self-study and a reference text for scientists, engineers and for researchers in medicine, finance and data mining.
Principles Of Artificial Neural Networks
DOWNLOAD
Author : Daniel Graupe
language : en
Publisher: World Scientific
Release Date : 2007
Principles Of Artificial Neural Networks written by Daniel Graupe and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with Computers categories.
The book should serve as a text for a university graduate course or for an advanced undergraduate course on neural networks in engineering and computer science departments. It should also serve as a self-study course for engineers and computer scientists in the industry. Covering major neural network approaches and architectures with the theories, this text presents detailed case studies for each of the approaches, accompanied with complete computer codes and the corresponding computed results. The case studies are designed to allow easy comparison of network performance to illustrate strengths and weaknesses of the different networks.