[PDF] Artificial Neural Networks With Java - eBooks Review

Artificial Neural Networks With Java


Artificial Neural Networks With Java
DOWNLOAD

Download Artificial Neural Networks With Java PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Artificial Neural Networks With Java book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Introduction To Neural Networks With Java


Introduction To Neural Networks With Java
DOWNLOAD
Author : Jeff Heaton
language : en
Publisher: Heaton Research Incorporated
Release Date : 2005

Introduction To Neural Networks With Java written by Jeff Heaton and has been published by Heaton Research Incorporated this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005 with Computers categories.


In addition to showing the programmer how to construct Neural Networks, the book discusses the Java Object Oriented Neural Engine (JOONE), a free open source Java neural engine. (Computers)



Artificial Neural Networks With Java


Artificial Neural Networks With Java
DOWNLOAD
Author : Igor Livshin
language : en
Publisher:
Release Date : 2019

Artificial Neural Networks With Java written by Igor Livshin and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019 with Electronic books categories.


Use Java to develop neural network applications in this practical book. After learning the rules involved in neural network processing, you will manually process the first neural network example. This covers the internals of front and back propagation, and facilitates the understanding of the main principles of neural network processing. Artificial Neural Networks with Java also teaches you how to prepare the data to be used in neural network development and suggests various techniques of data preparation for many unconventional tasks. The next big topic discussed in the book is using Java for neural network processing. You will use the Encog Java framework and discover how to do rapid development with Encog, allowing you to create large-scale neural network applications. The book also discusses the inability of neural networks to approximate complex non-continuous functions, and it introduces the micro-batch method that solves this issue. The step-by-step approach includes plenty of examples, diagrams, and screen shots to help you grasp the concepts quickly and easily. What You Will Learn Prepare your data for many different tasks Carry out some unusual neural network tasks Create neural network to process non-continuous functions Select and improve the development model Who This Book Is For Intermediate machine learning and deep learning developers who are interested in switching to Java.



Interdisciplinary Computing In Java Programming


Interdisciplinary Computing In Java Programming
DOWNLOAD
Author : Sun-Chong Wang
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Interdisciplinary Computing In Java Programming written by Sun-Chong Wang and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Computers categories.


Books on computation in the marketplace tend to discuss the topics within specific fields. Many computational algorithms, however, share common roots. Great advantages emerge if numerical methodologies break the boundaries and find their uses across disciplines. Interdisciplinary Computing In Java Programming Language introduces readers of different backgrounds to the beauty of the selected algorithms. Serious quantitative researchers, writing customized codes for computation, enjoy cracking source codes as opposed to the black-box approach. Most C and Fortran programs, despite being slightly faster in program execution, lack built-in support for plotting and graphical user interface. This book selects Java as the platform where source codes are developed and applications are run, helping readers/users best appreciate the fun of computation. Interdisciplinary Computing In Java Programming Language is designed to meet the needs of a professional audience composed of practitioners and researchers in science and technology. This book is also suitable for senior undergraduate and graduate-level students in computer science, as a secondary text.



Introduction To Neural Networks With Java


Introduction To Neural Networks With Java
DOWNLOAD
Author : Jeff Heaton
language : en
Publisher: Heaton Research, Inc.
Release Date : 2008

Introduction To Neural Networks With Java written by Jeff Heaton and has been published by Heaton Research, Inc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008 with Computers categories.


Introduction to Neural Networks in Java, Second Edition, introduces the Java programmer to the world of Neural Networks and Artificial Intelligence. Neural network architectures such as the feedforward, Hopfield, and Self Organizing Map networks are discussed. Training techniques such as Backpropagation, Genetic Algorithms and Simulated Annealing are also introduced. Practical examples are given for each neural network. Examples include the Traveling Salesman problem, handwriting recognition, financial prediction, game strategy, learning mathematical functions and special application to Internet bots. All Java source code can be downloaded online.



Java Deep Learning Cookbook


Java Deep Learning Cookbook
DOWNLOAD
Author : Rahul Raj
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-11-08

Java Deep Learning Cookbook written by Rahul Raj and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-08 with Computers categories.


Use Java and Deeplearning4j to build robust, scalable, and highly accurate AI models from scratch Key FeaturesInstall and configure Deeplearning4j to implement deep learning models from scratchExplore recipes for developing, training, and fine-tuning your neural network models in JavaModel neural networks using datasets containing images, text, and time-series dataBook Description Java is one of the most widely used programming languages in the world. With this book, you will see how to perform deep learning using Deeplearning4j (DL4J) – the most popular Java library for training neural networks efficiently. This book starts by showing you how to install and configure Java and DL4J on your system. You will then gain insights into deep learning basics and use your knowledge to create a deep neural network for binary classification from scratch. As you progress, you will discover how to build a convolutional neural network (CNN) in DL4J, and understand how to construct numeric vectors from text. This deep learning book will also guide you through performing anomaly detection on unsupervised data and help you set up neural networks in distributed systems effectively. In addition to this, you will learn how to import models from Keras and change the configuration in a pre-trained DL4J model. Finally, you will explore benchmarking in DL4J and optimize neural networks for optimal results. By the end of this book, you will have a clear understanding of how you can use DL4J to build robust deep learning applications in Java. What you will learnPerform data normalization and wrangling using DL4JBuild deep neural networks using DL4JImplement CNNs to solve image classification problemsTrain autoencoders to solve anomaly detection problems using DL4JPerform benchmarking and optimization to improve your model's performanceImplement reinforcement learning for real-world use cases using RL4JLeverage the capabilities of DL4J in distributed systemsWho this book is for If you are a data scientist, machine learning developer, or a deep learning enthusiast who wants to implement deep learning models in Java, this book is for you. Basic understanding of Java programming as well as some experience with machine learning and neural networks is required to get the most out of this book.



Deep Learning Practical Neural Networks With Java


Deep Learning Practical Neural Networks With Java
DOWNLOAD
Author : Yusuke Sugomori
language : en
Publisher: Packt Publishing Ltd
Release Date : 2017-06-08

Deep Learning Practical Neural Networks With Java written by Yusuke Sugomori and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-06-08 with Computers categories.


Build and run intelligent applications by leveraging key Java machine learning libraries About This Book Develop a sound strategy to solve predictive modelling problems using the most popular machine learning Java libraries. Explore a broad variety of data processing, machine learning, and natural language processing through diagrams, source code, and real-world applications This step-by-step guide will help you solve real-world problems and links neural network theory to their application Who This Book Is For This course is intended for data scientists and Java developers who want to dive into the exciting world of deep learning. It will get you up and running quickly and provide you with the skills you need to successfully create, customize, and deploy machine learning applications in real life. What You Will Learn Get a practical deep dive into machine learning and deep learning algorithms Explore neural networks using some of the most popular Deep Learning frameworks Dive into Deep Belief Nets and Stacked Denoising Autoencoders algorithms Apply machine learning to fraud, anomaly, and outlier detection Experiment with deep learning concepts, algorithms, and the toolbox for deep learning Select and split data sets into training, test, and validation, and explore validation strategies Apply the code generated in practical examples, including weather forecasting and pattern recognition In Detail Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognitionStarting with an introduction to basic machine learning algorithms, this course takes you further into this vital world of stunning predictive insights and remarkable machine intelligence. This course helps you solve challenging problems in image processing, speech recognition, language modeling. You will discover how to detect anomalies and fraud, and ways to perform activity recognition, image recognition, and text. You will also work with examples such as weather forecasting, disease diagnosis, customer profiling, generalization, extreme machine learning and more. By the end of this course, you will have all the knowledge you need to perform deep learning on your system with varying complexity levels, to apply them to your daily work. The course provides you with highly practical content explaining deep learning with Java, from the following Packt books: Java Deep Learning Essentials Machine Learning in Java Neural Network Programming with Java, Second Edition Style and approach This course aims to create a smooth learning path that will teach you how to effectively use deep learning with Java with other de facto components to get the most out of it. Through this comprehensive course, you'll learn the basics of predictive modelling and progress to solve real-world problems and links neural network theory to their application



Hands On Java Deep Learning For Computer Vision


Hands On Java Deep Learning For Computer Vision
DOWNLOAD
Author : Klevis Ramo
language : en
Publisher: Packt Publishing
Release Date : 2019-02-21

Hands On Java Deep Learning For Computer Vision written by Klevis Ramo and has been published by Packt Publishing this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-02-21 with categories.


Leverage the power of Java and deep learning to build production-grade Computer Vision applications Key Features Build real-world Computer Vision applications using the power of neural networks Implement image classification, object detection, and face recognition Know best practices on effectively building and deploying deep learning models in Java Book Description Although machine learning is an exciting world to explore, you may feel confused by all of its theoretical aspects. As a Java developer, you will be used to telling the computer exactly what to do, instead of being shown how data is generated; this causes many developers to struggle to adapt to machine learning. The goal of this book is to walk you through the process of efficiently training machine learning and deep learning models for Computer Vision using the most up-to-date techniques. The course is designed to familiarize you with neural networks, enabling you to train them efficiently, customize existing state-of-the-art architectures, build real-world Java applications, and get great results in a short space of time. You will build real-world Computer Vision applications, ranging from a simple Java handwritten digit recognition model to real-time Java autonomous car driving systems and face recognition models. By the end of this book, you will have mastered the best practices and modern techniques needed to build advanced Computer Vision Java applications and achieve production-grade accuracy. What you will learn Discover neural Networks and their applications in Computer Vision Explore the popular Java frameworks and libraries for deep learning Build deep neural networks in Java Implement an end-to-end image classification application in Java Perform real-time video object detection using deep learning Enhance performance and deploy applications for production Who this book is for This book is for data scientists, machine learning developers and deep learning practitioners with Java knowledge who want to implement machine learning and deep neural networks in the computer vision domain. You will need to have a basic knowledge of Java programming.



Principles Of Artificial Neural Networks


Principles Of Artificial Neural Networks
DOWNLOAD
Author : Daniel Graupe
language : en
Publisher: World Scientific
Release Date : 2007

Principles Of Artificial Neural Networks written by Daniel Graupe and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007 with Computers categories.


This book should serves as a self-study course for engineers and computer scientist in the industry. The features include major neural network approaches and architectures with theories and detailed case studies for each of the approaches acompanied by complete computer codes and the corresponding computed results. There is also a chapter on LAMSTAR neural network.



Machine Learning


Machine Learning
DOWNLOAD
Author : Jason Bell
language : en
Publisher: John Wiley & Sons
Release Date : 2020-03-10

Machine Learning written by Jason Bell and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-10 with Mathematics categories.


Dig deep into the data with a hands-on guide to machine learning with updated examples and more! Machine Learning: Hands-On for Developers and Technical Professionals provides hands-on instruction and fully-coded working examples for the most common machine learning techniques used by developers and technical professionals. The book contains a breakdown of each ML variant, explaining how it works and how it is used within certain industries, allowing readers to incorporate the presented techniques into their own work as they follow along. A core tenant of machine learning is a strong focus on data preparation, and a full exploration of the various types of learning algorithms illustrates how the proper tools can help any developer extract information and insights from existing data. The book includes a full complement of Instructor's Materials to facilitate use in the classroom, making this resource useful for students and as a professional reference. At its core, machine learning is a mathematical, algorithm-based technology that forms the basis of historical data mining and modern big data science. Scientific analysis of big data requires a working knowledge of machine learning, which forms predictions based on known properties learned from training data. Machine Learning is an accessible, comprehensive guide for the non-mathematician, providing clear guidance that allows readers to: Learn the languages of machine learning including Hadoop, Mahout, and Weka Understand decision trees, Bayesian networks, and artificial neural networks Implement Association Rule, Real Time, and Batch learning Develop a strategic plan for safe, effective, and efficient machine learning By learning to construct a system that can learn from data, readers can increase their utility across industries. Machine learning sits at the core of deep dive data analysis and visualization, which is increasingly in demand as companies discover the goldmine hiding in their existing data. For the tech professional involved in data science, Machine Learning: Hands-On for Developers and Technical Professionals provides the skills and techniques required to dig deeper.



Hands On Java Deep Learning For Computer Vision


Hands On Java Deep Learning For Computer Vision
DOWNLOAD
Author : Klevis Ramo
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-02-21

Hands On Java Deep Learning For Computer Vision written by Klevis Ramo and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-02-21 with Computers categories.


Leverage the power of Java and deep learning to build production-grade Computer Vision applications Key FeaturesBuild real-world Computer Vision applications using the power of neural networks Implement image classification, object detection, and face recognitionKnow best practices on effectively building and deploying deep learning models in JavaBook Description Although machine learning is an exciting world to explore, you may feel confused by all of its theoretical aspects. As a Java developer, you will be used to telling the computer exactly what to do, instead of being shown how data is generated; this causes many developers to struggle to adapt to machine learning. The goal of this book is to walk you through the process of efficiently training machine learning and deep learning models for Computer Vision using the most up-to-date techniques. The book is designed to familiarize you with neural networks, enabling you to train them efficiently, customize existing state-of-the-art architectures, build real-world Java applications, and get great results in a short space of time. You will build real-world Computer Vision applications, ranging from a simple Java handwritten digit recognition model to real-time Java autonomous car driving systems and face recognition models. By the end of this book, you will have mastered the best practices and modern techniques needed to build advanced Computer Vision Java applications and achieve production-grade accuracy. What you will learnDiscover neural networks and their applications in Computer VisionExplore the popular Java frameworks and libraries for deep learningBuild deep neural networks in Java Implement an end-to-end image classification application in JavaPerform real-time video object detection using deep learningEnhance performance and deploy applications for productionWho this book is for This book is for data scientists, machine learning developers and deep learning practitioners with Java knowledge who want to implement machine learning and deep neural networks in the computer vision domain. You will need to have a basic knowledge of Java programming.