Association Rule Hiding For Data Mining

DOWNLOAD
Download Association Rule Hiding For Data Mining PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Association Rule Hiding For Data Mining book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Association Rule Hiding For Data Mining
DOWNLOAD
Author : Aris Gkoulalas-Divanis
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-05-17
Association Rule Hiding For Data Mining written by Aris Gkoulalas-Divanis and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-05-17 with Computers categories.
Privacy and security risks arising from the application of different data mining techniques to large institutional data repositories have been solely investigated by a new research domain, the so-called privacy preserving data mining. Association rule hiding is a new technique in data mining, which studies the problem of hiding sensitive association rules from within the data. Association Rule Hiding for Data Mining addresses the problem of "hiding" sensitive association rules, and introduces a number of heuristic solutions. Exact solutions of increased time complexity that have been proposed recently are presented, as well as a number of computationally efficient (parallel) approaches that alleviate time complexity problems, along with a thorough discussion regarding closely related problems (inverse frequent item set mining, data reconstruction approaches, etc.). Unsolved problems, future directions and specific examples are provided throughout this book to help the reader study, assimilate and appreciate the important aspects of this challenging problem. Association Rule Hiding for Data Mining is designed for researchers, professors and advanced-level students in computer science studying privacy preserving data mining, association rule mining, and data mining. This book is also suitable for practitioners working in this industry.
Association Rule Hiding For Data Mining
DOWNLOAD
Author : Aris Gkoulalas-Divanis
language : en
Publisher:
Release Date : 2010
Association Rule Hiding For Data Mining written by Aris Gkoulalas-Divanis and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010 with categories.
Privacy and security risks arising from the application of different data mining techniques to large institutional data repositories have been solely investigated by a new research domain, the so-called privacy preserving data mining. Association rule hiding is a new technique on data mining, which studies the problem of hiding sensitive association rules from within the data. Association Rule Hiding for Data Mining addresses the optimization problem of "hiding" sensitive association rules which due to its combinatorial nature admits a number of heuristic solutions that will be proposed and presented in this book. Exact solutions of increased time complexity that have been proposed recently are also presented as well as a number of computationally efficient (parallel) approaches that alleviate time complexity problems, along with a discussion regarding unsolved problems and future directions. Specific examples are provided throughout this book to help the reader study, assimilate and appreciate the important aspects of this challenging problem. Association Rule Hiding for Data Mining is designed for researchers, professors and advanced-level students in computer science studying privacy preserving data mining, association rule mining, and data mining. This book is also suitable for practitioners working in this industry.
Research Anthology On Privatizing And Securing Data
DOWNLOAD
Author : Management Association, Information Resources
language : en
Publisher: IGI Global
Release Date : 2021-04-23
Research Anthology On Privatizing And Securing Data written by Management Association, Information Resources and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-04-23 with Computers categories.
With the immense amount of data that is now available online, security concerns have been an issue from the start, and have grown as new technologies are increasingly integrated in data collection, storage, and transmission. Online cyber threats, cyber terrorism, hacking, and other cybercrimes have begun to take advantage of this information that can be easily accessed if not properly handled. New privacy and security measures have been developed to address this cause for concern and have become an essential area of research within the past few years and into the foreseeable future. The ways in which data is secured and privatized should be discussed in terms of the technologies being used, the methods and models for security that have been developed, and the ways in which risks can be detected, analyzed, and mitigated. The Research Anthology on Privatizing and Securing Data reveals the latest tools and technologies for privatizing and securing data across different technologies and industries. It takes a deeper dive into both risk detection and mitigation, including an analysis of cybercrimes and cyber threats, along with a sharper focus on the technologies and methods being actively implemented and utilized to secure data online. Highlighted topics include information governance and privacy, cybersecurity, data protection, challenges in big data, security threats, and more. This book is essential for data analysts, cybersecurity professionals, data scientists, security analysts, IT specialists, practitioners, researchers, academicians, and students interested in the latest trends and technologies for privatizing and securing data.
Study Of Association Rule Mining And Different Hiding Techniques
DOWNLOAD
Author :
language : en
Publisher:
Release Date :
Study Of Association Rule Mining And Different Hiding Techniques written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on with categories.
Data mining is the process of extracting hidden patterns from data. As more data is gathered, with the amount of data doubling every three years, data mining is becoming an increasingly important tool to transform this data into information. In this paper, we first focused on APRIORI algorithm, a popular data mining technique and compared the performances of a linked list based implementation as a basis and a tries-based implementation on it for mining frequent item sequences in a transactional database. We examined the data structure, implementation and algorithmic features mainly focusing on those that also arise in frequent item set mining. This algorithm has given us new capabilities to identify associations in large data sets. But a key problem, and still not sufficiently investigated, is the need to balance the confidentiality of the disclosed data with the legitimate needs of the data users. One rule is characterized as sensitive if its disclosure risk is above a certain privacy threshold. Sometimes, sensitive rules should not be disclosed to the public, since among other things, they may be used for inferring sensitive data, or they may provide business competitors with an advantage. So, next we worked with some association rule hiding algorithms and examined their performances in order to analyze their time complexity and the impact that they have in the original database. We worked on two different side effects - one was the number of new rules generated during the hiding process and the other one was the number of non-sensitive rules lost during the process.
Frequent Pattern Mining
DOWNLOAD
Author : Charu C. Aggarwal
language : en
Publisher: Springer
Release Date : 2014-08-29
Frequent Pattern Mining written by Charu C. Aggarwal and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-08-29 with Computers categories.
This comprehensive reference consists of 18 chapters from prominent researchers in the field. Each chapter is self-contained, and synthesizes one aspect of frequent pattern mining. An emphasis is placed on simplifying the content, so that students and practitioners can benefit from the book. Each chapter contains a survey describing key research on the topic, a case study and future directions. Key topics include: Pattern Growth Methods, Frequent Pattern Mining in Data Streams, Mining Graph Patterns, Big Data Frequent Pattern Mining, Algorithms for Data Clustering and more. Advanced-level students in computer science, researchers and practitioners from industry will find this book an invaluable reference.
Privacy Preserving Data Mining
DOWNLOAD
Author : Charu C. Aggarwal
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-06-10
Privacy Preserving Data Mining written by Charu C. Aggarwal and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-06-10 with Computers categories.
Advances in hardware technology have increased the capability to store and record personal data about consumers and individuals, causing concerns that personal data may be used for a variety of intrusive or malicious purposes. Privacy-Preserving Data Mining: Models and Algorithms proposes a number of techniques to perform the data mining tasks in a privacy-preserving way. These techniques generally fall into the following categories: data modification techniques, cryptographic methods and protocols for data sharing, statistical techniques for disclosure and inference control, query auditing methods, randomization and perturbation-based techniques. This edited volume contains surveys by distinguished researchers in the privacy field. Each survey includes the key research content as well as future research directions. Privacy-Preserving Data Mining: Models and Algorithms is designed for researchers, professors, and advanced-level students in computer science, and is also suitable for industry practitioners.
Privacy Preserving Data Mining
DOWNLOAD
Author : Jaideep Vaidya
language : en
Publisher: Springer Science & Business Media
Release Date : 2005-11-29
Privacy Preserving Data Mining written by Jaideep Vaidya and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-11-29 with Computers categories.
Privacy preserving data mining implies the "mining" of knowledge from distributed data without violating the privacy of the individual/corporations involved in contributing the data. This volume provides a comprehensive overview of available approaches, techniques and open problems in privacy preserving data mining. Crystallizing much of the underlying foundation, the book aims to inspire further research in this new and growing area. Privacy Preserving Data Mining is intended to be accessible to industry practitioners and policy makers, to help inform future decision making and legislation, and to serve as a useful technical reference.
Computational Linguistics And Intelligent Text Processing
DOWNLOAD
Author : Alexander Gelbukh
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-02-17
Computational Linguistics And Intelligent Text Processing written by Alexander Gelbukh and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-02-17 with Computers categories.
This two-volume set, consisting of LNCS 6608 and LNCS 6609, constitutes the thoroughly refereed proceedings of the 12th International Conference on Computer Linguistics and Intelligent Processing, held in Tokyo, Japan, in February 2011. The 74 full papers, presented together with 4 invited papers, were carefully reviewed and selected from 298 submissions. The contents have been ordered according to the following topical sections: lexical resources; syntax and parsing; part-of-speech tagging and morphology; word sense disambiguation; semantics and discourse; opinion mining and sentiment detection; text generation; machine translation and multilingualism; information extraction and information retrieval; text categorization and classification; summarization and recognizing textual entailment; authoring aid, error correction, and style analysis; and speech recognition and generation.
Principles Of Data Mining
DOWNLOAD
Author : David J. Hand
language : en
Publisher: MIT Press
Release Date : 2001-08-17
Principles Of Data Mining written by David J. Hand and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2001-08-17 with Computers categories.
The first truly interdisciplinary text on data mining, blending the contributions of information science, computer science, and statistics. The growing interest in data mining is motivated by a common problem across disciplines: how does one store, access, model, and ultimately describe and understand very large data sets? Historically, different aspects of data mining have been addressed independently by different disciplines. This is the first truly interdisciplinary text on data mining, blending the contributions of information science, computer science, and statistics. The book consists of three sections. The first, foundations, provides a tutorial overview of the principles underlying data mining algorithms and their application. The presentation emphasizes intuition rather than rigor. The second section, data mining algorithms, shows how algorithms are constructed to solve specific problems in a principled manner. The algorithms covered include trees and rules for classification and regression, association rules, belief networks, classical statistical models, nonlinear models such as neural networks, and local "memory-based" models. The third section shows how all of the preceding analysis fits together when applied to real-world data mining problems. Topics include the role of metadata, how to handle missing data, and data preprocessing.
Principles Of Data Mining
DOWNLOAD
Author : Max Bramer
language : en
Publisher: Springer
Release Date : 2016-11-09
Principles Of Data Mining written by Max Bramer and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-09 with Computers categories.
This book explains and explores the principal techniques of Data Mining, the automatic extraction of implicit and potentially useful information from data, which is increasingly used in commercial, scientific and other application areas. It focuses on classification, association rule mining and clustering. Each topic is clearly explained, with a focus on algorithms not mathematical formalism, and is illustrated by detailed worked examples. The book is written for readers without a strong background in mathematics or statistics and any formulae used are explained in detail. It can be used as a textbook to support courses at undergraduate or postgraduate levels in a wide range of subjects including Computer Science, Business Studies, Marketing, Artificial Intelligence, Bioinformatics and Forensic Science. As an aid to self study, this book aims to help general readers develop the necessary understanding of what is inside the 'black box' so they can use commercial data mining packages discriminatingly, as well as enabling advanced readers or academic researchers to understand or contribute to future technical advances in the field. Each chapter has practical exercises to enable readers to check their progress. A full glossary of technical terms used is included. This expanded third edition includes detailed descriptions of algorithms for classifying streaming data, both stationary data, where the underlying model is fixed, and data that is time-dependent, where the underlying model changes from time to time - a phenomenon known as concept drift.