[PDF] Automated Data Collection With R - eBooks Review

Automated Data Collection With R


Automated Data Collection With R
DOWNLOAD

Download Automated Data Collection With R PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Automated Data Collection With R book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Automated Data Collection With R


Automated Data Collection With R
DOWNLOAD
Author : Simon Munzert
language : en
Publisher: John Wiley & Sons
Release Date : 2015-01-20

Automated Data Collection With R written by Simon Munzert and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-01-20 with Computers categories.


A hands on guide to web scraping and text mining for both beginners and experienced users of R Introduces fundamental concepts of the main architecture of the web and databases and covers HTTP, HTML, XML, JSON, SQL. Provides basic techniques to query web documents and data sets (XPath and regular expressions). An extensive set of exercises are presented to guide the reader through each technique. Explores both supervised and unsupervised techniques as well as advanced techniques such as data scraping and text management. Case studies are featured throughout along with examples for each technique presented. R code and solutions to exercises featured in the book are provided on a supporting website.



Statistical Data Cleaning With Applications In R


Statistical Data Cleaning With Applications In R
DOWNLOAD
Author : Mark van der Loo
language : en
Publisher: John Wiley & Sons
Release Date : 2018-04-23

Statistical Data Cleaning With Applications In R written by Mark van der Loo and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-04-23 with Computers categories.


A comprehensive guide to automated statistical data cleaning The production of clean data is a complex and time-consuming process that requires both technical know-how and statistical expertise. Statistical Data Cleaning brings together a wide range of techniques for cleaning textual, numeric or categorical data. This book examines technical data cleaning methods relating to data representation and data structure. A prominent role is given to statistical data validation, data cleaning based on predefined restrictions, and data cleaning strategy. Key features: Focuses on the automation of data cleaning methods, including both theory and applications written in R. Enables the reader to design data cleaning processes for either one-off analytical purposes or for setting up production systems that clean data on a regular basis. Explores statistical techniques for solving issues such as incompleteness, contradictions and outliers, integration of data cleaning components and quality monitoring. Supported by an accompanying website featuring data and R code. This book enables data scientists and statistical analysts working with data to deepen their understanding of data cleaning as well as to upgrade their practical data cleaning skills. It can also be used as material for a course in data cleaning and analyses.



Automated Trading With R


Automated Trading With R
DOWNLOAD
Author : Chris Conlan
language : en
Publisher: Apress
Release Date : 2016-09-28

Automated Trading With R written by Chris Conlan and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-09-28 with Computers categories.


Learn to trade algorithmically with your existing brokerage, from data management, to strategy optimization, to order execution, using free and publicly available data. Connect to your brokerage’s API, and the source code is plug-and-play. Automated Trading with R explains automated trading, starting with its mathematics and moving to its computation and execution. You will gain a unique insight into the mechanics and computational considerations taken in building a back-tester, strategy optimizer, and fully functional trading platform. The platform built in this book can serve as a complete replacement for commercially available platforms used by retail traders and small funds. Software components are strictly decoupled and easily scalable, providing opportunity to substitute any data source, trading algorithm, or brokerage. This book will: Provide a flexible alternative to common strategy automation frameworks, like Tradestation, Metatrader, and CQG, to small funds and retail traders Offer an understanding of the internal mechanisms of an automated trading system Standardize discussion and notation of real-world strategy optimization problems What You Will Learn Understand machine-learning criteria for statistical validity in the context of time-series Optimize strategies, generate real-time trading decisions, and minimize computation time while programming an automated strategy in R and using its package library Best simulate strategy performance in its specific use case to derive accurate performance estimates Understand critical real-world variables pertaining to portfolio management and performance assessment, including latency, drawdowns, varying trade size, portfolio growth, and penalization of unused capital Who This Book Is For Traders/practitioners at the retail or small fund level with at least an undergraduate background in finance or computer science; graduate level finance or data science students



Data Wrangling With R


Data Wrangling With R
DOWNLOAD
Author : Bradley C. Boehmke, Ph.D.
language : en
Publisher: Springer
Release Date : 2016-11-17

Data Wrangling With R written by Bradley C. Boehmke, Ph.D. and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-17 with Computers categories.


This guide for practicing statisticians, data scientists, and R users and programmers will teach the essentials of preprocessing: data leveraging the R programming language to easily and quickly turn noisy data into usable pieces of information. Data wrangling, which is also commonly referred to as data munging, transformation, manipulation, janitor work, etc., can be a painstakingly laborious process. Roughly 80% of data analysis is spent on cleaning and preparing data; however, being a prerequisite to the rest of the data analysis workflow (visualization, analysis, reporting), it is essential that one become fluent and efficient in data wrangling techniques. This book will guide the user through the data wrangling process via a step-by-step tutorial approach and provide a solid foundation for working with data in R. The author's goal is to teach the user how to easily wrangle data in order to spend more time on understanding the content of the data. By the end of the book, the user will have learned: How to work with different types of data such as numerics, characters, regular expressions, factors, and dates The difference between different data structures and how to create, add additional components to, and subset each data structure How to acquire and parse data from locations previously inaccessible How to develop functions and use loop control structures to reduce code redundancy How to use pipe operators to simplify code and make it more readable How to reshape the layout of data and manipulate, summarize, and join data sets



Quantitative Social Science Data With R


Quantitative Social Science Data With R
DOWNLOAD
Author : Brian J. Fogarty
language : en
Publisher: SAGE
Release Date : 2018-11-24

Quantitative Social Science Data With R written by Brian J. Fogarty and has been published by SAGE this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-24 with Reference categories.


Relevant, engaging, and packed with student-focused learning features, this book provides the basic step-by-step introduction to quantitative research and data every student needs.



Hands On Machine Learning With R


Hands On Machine Learning With R
DOWNLOAD
Author : Brad Boehmke
language : en
Publisher: CRC Press
Release Date : 2019-11-07

Hands On Machine Learning With R written by Brad Boehmke and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-07 with Business & Economics categories.


Hands-on Machine Learning with R provides a practical and applied approach to learning and developing intuition into today’s most popular machine learning methods. This book serves as a practitioner’s guide to the machine learning process and is meant to help the reader learn to apply the machine learning stack within R, which includes using various R packages such as glmnet, h2o, ranger, xgboost, keras, and others to effectively model and gain insight from their data. The book favors a hands-on approach, providing an intuitive understanding of machine learning concepts through concrete examples and just a little bit of theory. Throughout this book, the reader will be exposed to the entire machine learning process including feature engineering, resampling, hyperparameter tuning, model evaluation, and interpretation. The reader will be exposed to powerful algorithms such as regularized regression, random forests, gradient boosting machines, deep learning, generalized low rank models, and more! By favoring a hands-on approach and using real word data, the reader will gain an intuitive understanding of the architectures and engines that drive these algorithms and packages, understand when and how to tune the various hyperparameters, and be able to interpret model results. By the end of this book, the reader should have a firm grasp of R’s machine learning stack and be able to implement a systematic approach for producing high quality modeling results. Features: · Offers a practical and applied introduction to the most popular machine learning methods. · Topics covered include feature engineering, resampling, deep learning and more. · Uses a hands-on approach and real world data.



Reproducible Research With R And Rstudio


Reproducible Research With R And Rstudio
DOWNLOAD
Author : Christopher Gandrud
language : en
Publisher: CRC Press
Release Date : 2020-02-21

Reproducible Research With R And Rstudio written by Christopher Gandrud and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-02-21 with Business & Economics categories.


Praise for previous editions: "Gandrud has written a great outline of how a fully reproducible research project should look from start to finish, with brief explanations of each tool that he uses along the way... Advanced undergraduate students in mathematics, statistics, and similar fields as well as students just beginning their graduate studies would benefit the most from reading this book. Many more experienced R users or second-year graduate students might find themselves thinking, ‘I wish I’d read this book at the start of my studies, when I was first learning R!’...This book could be used as the main text for a class on reproducible research ..." (The American Statistician) Reproducible Research with R and R Studio, Third Edition brings together the skills and tools needed for doing and presenting computational research. Using straightforward examples, the book takes you through an entire reproducible research workflow. This practical workflow enables you to gather and analyze data as well as dynamically present results in print and on the web. Supplementary materials and example are available on the author’s website. New to the Third Edition Updated package recommendations, examples, URLs, and removed technologies no longer in regular use. More advanced R Markdown (and less LaTeX) in discussions of markup languages and examples. Stronger focus on reproducible working directory tools. Updated discussion of cloud storage services and persistent reproducible material citation. Added discussion of Jupyter notebooks and reproducible practices in industry. Examples of data manipulation with Tidyverse tibbles (in addition to standard data frames) and pivot_longer() and pivot_wider() functions for pivoting data. Features Incorporates the most important advances that have been developed since the editions were published Describes a complete reproducible research workflow, from data gathering to the presentation of results Shows how to automatically generate tables and figures using R Includes instructions on formatting a presentation document via markup languages Discusses cloud storage and versioning services, particularly Github Explains how to use Unix-like shell programs for working with large research projects



Reproducible Research With R And R Studio


Reproducible Research With R And R Studio
DOWNLOAD
Author : Christopher Gandrud
language : en
Publisher: CRC Press
Release Date : 2018-09-03

Reproducible Research With R And R Studio written by Christopher Gandrud and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-03 with Business & Economics categories.


All the Tools for Gathering and Analyzing Data and Presenting Results Reproducible Research with R and RStudio, Second Edition brings together the skills and tools needed for doing and presenting computational research. Using straightforward examples, the book takes you through an entire reproducible research workflow. This practical workflow enables you to gather and analyze data as well as dynamically present results in print and on the web. New to the Second Edition The rmarkdown package that allows you to create reproducible research documents in PDF, HTML, and Microsoft Word formats using the simple and intuitive Markdown syntax Improvements to RStudio’s interface and capabilities, such as its new tools for handling R Markdown documents Expanded knitr R code chunk capabilities The kable function in the knitr package and the texreg package for dynamically creating tables to present your data and statistical results An improved discussion of file organization, enabling you to take full advantage of relative file paths so that your documents are more easily reproducible across computers and systems The dplyr, magrittr, and tidyr packages for fast data manipulation Numerous modifications to R syntax in user-created packages Changes to GitHub’s and Dropbox’s interfaces Create Dynamic and Highly Reproducible Research This updated book provides all the tools to combine your research with the presentation of your findings. It saves you time searching for information so that you can spend more time actually addressing your research questions. Supplementary files used for the examples and a reproducible research project are available on the author’s website.



Basic Business Analytics Using R


Basic Business Analytics Using R
DOWNLOAD
Author : Dr. Mahavir M. Shetiya
language : en
Publisher: Thakur Publication Private Limited
Release Date : 2023-11-10

Basic Business Analytics Using R written by Dr. Mahavir M. Shetiya and has been published by Thakur Publication Private Limited this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-11-10 with Education categories.


Buy BASIC BUSINESS ANALYTICS USING R e-Book for Mba 2nd Semester in English language specially designed for SPPU ( Savitribai Phule Pune University ,Maharashtra) By Thakur publication.



Energy Research Abstracts


Energy Research Abstracts
DOWNLOAD
Author :
language : en
Publisher:
Release Date : 1993

Energy Research Abstracts written by and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1993 with Power resources categories.