[PDF] Automotive Model Predictive Control - eBooks Review

Automotive Model Predictive Control


Automotive Model Predictive Control
DOWNLOAD

Download Automotive Model Predictive Control PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Automotive Model Predictive Control book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Automotive Model Predictive Control


Automotive Model Predictive Control
DOWNLOAD
Author : Luigi Del Re
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-03-11

Automotive Model Predictive Control written by Luigi Del Re and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-03-11 with Technology & Engineering categories.


Automotive control has developed over the decades from an auxiliary te- nology to a key element without which the actual performances, emission, safety and consumption targets could not be met. Accordingly, automotive control has been increasing its authority and responsibility – at the price of complexity and di?cult tuning. The progressive evolution has been mainly ledby speci?capplicationsandshorttermtargets,withthe consequencethat automotive control is to a very large extent more heuristic than systematic. Product requirements are still increasing and new challenges are coming from potentially huge markets like India and China, and against this ba- ground there is wide consensus both in the industry and academia that the current state is not satisfactory. Model-based control could be an approach to improve performance while reducing development and tuning times and possibly costs. Model predictive control is a kind of model-based control design approach which has experienced a growing success since the middle of the 1980s for “slow” complex plants, in particular of the chemical and process industry. In the last decades, severaldevelopments haveallowedusing these methods also for “fast”systemsandthis hassupporteda growinginterestinitsusealsofor automotive applications, with several promising results reported. Still there is no consensus on whether model predictive control with its high requi- ments on model quality and on computational power is a sensible choice for automotive control.



Handbook Of Model Predictive Control


Handbook Of Model Predictive Control
DOWNLOAD
Author : Saša V. Raković
language : en
Publisher: Springer
Release Date : 2018-09-01

Handbook Of Model Predictive Control written by Saša V. Raković and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-01 with Science categories.


Recent developments in model-predictive control promise remarkable opportunities for designing multi-input, multi-output control systems and improving the control of single-input, single-output systems. This volume provides a definitive survey of the latest model-predictive control methods available to engineers and scientists today. The initial set of chapters present various methods for managing uncertainty in systems, including stochastic model-predictive control. With the advent of affordable and fast computation, control engineers now need to think about using “computationally intensive controls,” so the second part of this book addresses the solution of optimization problems in “real” time for model-predictive control. The theory and applications of control theory often influence each other, so the last section of Handbook of Model Predictive Control rounds out the book with representative applications to automobiles, healthcare, robotics, and finance. The chapters in this volume will be useful to working engineers, scientists, and mathematicians, as well as students and faculty interested in the progression of control theory. Future developments in MPC will no doubt build from concepts demonstrated in this book and anyone with an interest in MPC will find fruitful information and suggestions for additional reading.



Automotive Model Predictive Control


Automotive Model Predictive Control
DOWNLOAD
Author : Luigi Del Re
language : en
Publisher:
Release Date : 2010-09-10

Automotive Model Predictive Control written by Luigi Del Re and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-09-10 with categories.




Predictive Control For Linear And Hybrid Systems


Predictive Control For Linear And Hybrid Systems
DOWNLOAD
Author : Francesco Borrelli
language : en
Publisher: Cambridge University Press
Release Date : 2017-06-22

Predictive Control For Linear And Hybrid Systems written by Francesco Borrelli and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-06-22 with Mathematics categories.


With a simple approach that includes real-time applications and algorithms, this book covers the theory of model predictive control (MPC).



Model Predictive Control


Model Predictive Control
DOWNLOAD
Author : Corrine Wade
language : en
Publisher: Nova Science Publishers
Release Date : 2015

Model Predictive Control written by Corrine Wade and has been published by Nova Science Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015 with Predictive control categories.


Although industrial processes are inherently nonlinear, many contributions for controller design for those plants are based on the assumption of a linear model of the system. However, in some cases it is difficult to represent a given process using a linear model. Model Predictive Control (MPC) is an optimal control approach which can effectively deal with constraints and multivariable processes in industries. Because of its advantages, MPC has been widely applied in automotive and process control communities. This book discusses the theory, practices and future challenges of model predictive control.



Model Predictive Control System Design And Implementation Using Matlab


Model Predictive Control System Design And Implementation Using Matlab
DOWNLOAD
Author : Liuping Wang
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-02-14

Model Predictive Control System Design And Implementation Using Matlab written by Liuping Wang and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-02-14 with Technology & Engineering categories.


Model Predictive Control System Design and Implementation Using MATLAB® proposes methods for design and implementation of MPC systems using basis functions that confer the following advantages: - continuous- and discrete-time MPC problems solved in similar design frameworks; - a parsimonious parametric representation of the control trajectory gives rise to computationally efficient algorithms and better on-line performance; and - a more general discrete-time representation of MPC design that becomes identical to the traditional approach for an appropriate choice of parameters. After the theoretical presentation, coverage is given to three industrial applications. The subject of quadratic programming, often associated with the core optimization algorithms of MPC is also introduced and explained. The technical contents of this book is mainly based on advances in MPC using state-space models and basis functions. This volume includes numerous analytical examples and problems and MATLAB® programs and exercises.



Explicit Nonlinear Model Predictive Control


Explicit Nonlinear Model Predictive Control
DOWNLOAD
Author : Alexandra Grancharova
language : en
Publisher: Springer
Release Date : 2012-03-22

Explicit Nonlinear Model Predictive Control written by Alexandra Grancharova and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-03-22 with Technology & Engineering categories.


Nonlinear Model Predictive Control (NMPC) has become the accepted methodology to solve complex control problems related to process industries. The main motivation behind explicit NMPC is that an explicit state feedback law avoids the need for executing a numerical optimization algorithm in real time. The benefits of an explicit solution, in addition to the efficient on-line computations, include also verifiability of the implementation and the possibility to design embedded control systems with low software and hardware complexity. This book considers the multi-parametric Nonlinear Programming (mp-NLP) approaches to explicit approximate NMPC of constrained nonlinear systems, developed by the authors, as well as their applications to various NMPC problem formulations and several case studies. The following types of nonlinear systems are considered, resulting in different NMPC problem formulations: ؠ Nonlinear systems described by first-principles models and nonlinear systems described by black-box models; - Nonlinear systems with continuous control inputs and nonlinear systems with quantized control inputs; - Nonlinear systems without uncertainty and nonlinear systems with uncertainties (polyhedral description of uncertainty and stochastic description of uncertainty); - Nonlinear systems, consisting of interconnected nonlinear sub-systems. The proposed mp-NLP approaches are illustrated with applications to several case studies, which are taken from diverse areas such as automotive mechatronics, compressor control, combustion plant control, reactor control, pH maintaining system control, cart and spring system control, and diving computers.



Nonlinear Model Predictive Control


Nonlinear Model Predictive Control
DOWNLOAD
Author : Lars Grüne
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-04-11

Nonlinear Model Predictive Control written by Lars Grüne and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-04-11 with Technology & Engineering categories.


Nonlinear Model Predictive Control is a thorough and rigorous introduction to nonlinear model predictive control (NMPC) for discrete-time and sampled-data systems. NMPC is interpreted as an approximation of infinite-horizon optimal control so that important properties like closed-loop stability, inverse optimality and suboptimality can be derived in a uniform manner. These results are complemented by discussions of feasibility and robustness. NMPC schemes with and without stabilizing terminal constraints are detailed and intuitive examples illustrate the performance of different NMPC variants. An introduction to nonlinear optimal control algorithms gives insight into how the nonlinear optimisation routine – the core of any NMPC controller – works. An appendix covering NMPC software and accompanying software in MATLAB® and C++(downloadable from www.springer.com/ISBN) enables readers to perform computer experiments exploring the possibilities and limitations of NMPC.



Model Predictive Control


Model Predictive Control
DOWNLOAD
Author : Basil Kouvaritakis
language : en
Publisher: Springer
Release Date : 2015-12-01

Model Predictive Control written by Basil Kouvaritakis and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-12-01 with Technology & Engineering categories.


For the first time, a textbook that brings together classical predictive control with treatment of up-to-date robust and stochastic techniques. Model Predictive Control describes the development of tractable algorithms for uncertain, stochastic, constrained systems. The starting point is classical predictive control and the appropriate formulation of performance objectives and constraints to provide guarantees of closed-loop stability and performance. Moving on to robust predictive control, the text explains how similar guarantees may be obtained for cases in which the model describing the system dynamics is subject to additive disturbances and parametric uncertainties. Open- and closed-loop optimization are considered and the state of the art in computationally tractable methods based on uncertainty tubes presented for systems with additive model uncertainty. Finally, the tube framework is also applied to model predictive control problems involving hard or probabilistic constraints for the cases of multiplicative and stochastic model uncertainty. The book provides: extensive use of illustrative examples; sample problems; and discussion of novel control applications such as resource allocation for sustainable development and turbine-blade control for maximized power capture with simultaneously reduced risk of turbulence-induced damage. Graduate students pursuing courses in model predictive control or more generally in advanced or process control and senior undergraduates in need of a specialized treatment will find Model Predictive Control an invaluable guide to the state of the art in this important subject. For the instructor it provides an authoritative resource for the construction of courses.



Model Predictive Control


Model Predictive Control
DOWNLOAD
Author : Eduardo F. Camacho
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-01-10

Model Predictive Control written by Eduardo F. Camacho and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-01-10 with Technology & Engineering categories.


The second edition of "Model Predictive Control" provides a thorough introduction to theoretical and practical aspects of the most commonly used MPC strategies. It bridges the gap between the powerful but often abstract techniques of control researchers and the more empirical approach of practitioners. The book demonstrates that a powerful technique does not always require complex control algorithms. Many new exercises and examples have also been added throughout. Solutions available for download from the authors' website save the tutor time and enable the student to follow results more closely even when the tutor isn't present.