[PDF] Basic Elements Of Differential Geometry And Topology - eBooks Review

Basic Elements Of Differential Geometry And Topology


Basic Elements Of Differential Geometry And Topology
DOWNLOAD

Download Basic Elements Of Differential Geometry And Topology PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Basic Elements Of Differential Geometry And Topology book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Basic Elements Of Differential Geometry And Topology


Basic Elements Of Differential Geometry And Topology
DOWNLOAD
Author : S.P. Novikov
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-14

Basic Elements Of Differential Geometry And Topology written by S.P. Novikov and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-14 with Mathematics categories.


One service mathematics has rendered the 'Et moi ..., si j'avait su comment en revenir, je n'y serais point aile.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded n- sense'. The series is divergent; therefore we may be able to do something with it. Eric T. Bell O. Heaviside Matht"natics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics seNe as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series



Basic Elements Of Differential Geometry And Topology


Basic Elements Of Differential Geometry And Topology
DOWNLOAD
Author : S.P. Novikov
language : en
Publisher: Springer
Release Date : 2013-01-09

Basic Elements Of Differential Geometry And Topology written by S.P. Novikov and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-01-09 with Mathematics categories.




Fundamentals Of Differential Geometry


Fundamentals Of Differential Geometry
DOWNLOAD
Author : Serge Lang
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Fundamentals Of Differential Geometry written by Serge Lang and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


The present book aims to give a fairly comprehensive account of the fundamentals of differential manifolds and differential geometry. The size of the book influenced where to stop, and there would be enough material for a second volume (this is not a threat). At the most basic level, the book gives an introduction to the basic concepts which are used in differential topology, differential geometry, and differential equations. In differential topology, one studies for instance homotopy classes of maps and the possibility of finding suitable differen tiable maps in them (immersions, embeddings, isomorphisms, etc. ). One may also use differentiable structures on topological manifolds to deter mine the topological structure of the manifold (for example, it la Smale [Sm 67]). In differential geometry, one puts an additional structure on the differentiable manifold (a vector field, a spray, a 2-form, a Riemannian metric, ad lib. ) and studies properties connected especially with these objects. Formally, one may say that one studies properties invariant under the group of differentiable automorphisms which preserve the additional structure. In differential equations, one studies vector fields and their in tegral curves, singular points, stable and unstable manifolds, etc. A certain number of concepts are essential for all three, and are so basic and elementary that it is worthwhile to collect them together so that more advanced expositions can be given without having to start from the very beginnings.



Elements Of Differential Topology


Elements Of Differential Topology
DOWNLOAD
Author : Anant R. Shastri
language : en
Publisher: CRC Press
Release Date : 2011-03-04

Elements Of Differential Topology written by Anant R. Shastri and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-03-04 with Mathematics categories.


Derived from the author's course on the subject, Elements of Differential Topology explores the vast and elegant theories in topology developed by Morse, Thom, Smale, Whitney, Milnor, and others. It begins with differential and integral calculus, leads you through the intricacies of manifold theory, and concludes with discussions on algebraic topol



Introduction To Differential Geometry


Introduction To Differential Geometry
DOWNLOAD
Author : Joel W. Robbin
language : en
Publisher: Springer Nature
Release Date : 2022-01-12

Introduction To Differential Geometry written by Joel W. Robbin and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-01-12 with Mathematics categories.


This textbook is suitable for a one semester lecture course on differential geometry for students of mathematics or STEM disciplines with a working knowledge of analysis, linear algebra, complex analysis, and point set topology. The book treats the subject both from an extrinsic and an intrinsic view point. The first chapters give a historical overview of the field and contain an introduction to basic concepts such as manifolds and smooth maps, vector fields and flows, and Lie groups, leading up to the theorem of Frobenius. Subsequent chapters deal with the Levi-Civita connection, geodesics, the Riemann curvature tensor, a proof of the Cartan-Ambrose-Hicks theorem, as well as applications to flat spaces, symmetric spaces, and constant curvature manifolds. Also included are sections about manifolds with nonpositive sectional curvature, the Ricci tensor, the scalar curvature, and the Weyl tensor. An additional chapter goes beyond the scope of a one semester lecture course and deals with subjects such as conjugate points and the Morse index, the injectivity radius, the group of isometries and the Myers-Steenrod theorem, and Donaldson's differential geometric approach to Lie algebra theory.



Elementary Differential Geometry


Elementary Differential Geometry
DOWNLOAD
Author : Barrett O'Neill
language : en
Publisher: Academic Press
Release Date : 2014-05-12

Elementary Differential Geometry written by Barrett O'Neill and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-12 with Mathematics categories.


Elementary Differential Geometry focuses on the elementary account of the geometry of curves and surfaces. The book first offers information on calculus on Euclidean space and frame fields. Topics include structural equations, connection forms, frame fields, covariant derivatives, Frenet formulas, curves, mappings, tangent vectors, and differential forms. The publication then examines Euclidean geometry and calculus on a surface. Discussions focus on topological properties of surfaces, differential forms on a surface, integration of forms, differentiable functions and tangent vectors, congruence of curves, derivative map of an isometry, and Euclidean geometry. The manuscript takes a look at shape operators, geometry of surfaces in E, and Riemannian geometry. Concerns include geometric surfaces, covariant derivative, curvature and conjugate points, Gauss-Bonnet theorem, fundamental equations, global theorems, isometries and local isometries, orthogonal coordinates, and integration and orientation. The text is a valuable reference for students interested in elementary differential geometry.



Introduction To Differential Topology


Introduction To Differential Topology
DOWNLOAD
Author : Theodor Bröcker
language : en
Publisher: Cambridge University Press
Release Date : 1982-09-16

Introduction To Differential Topology written by Theodor Bröcker and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1982-09-16 with Mathematics categories.


This book is intended as an elementary introduction to differential manifolds. The authors concentrate on the intuitive geometric aspects and explain not only the basic properties but also teach how to do the basic geometrical constructions. An integral part of the work are the many diagrams which illustrate the proofs. The text is liberally supplied with exercises and will be welcomed by students with some basic knowledge of analysis and topology.



An Introduction To Manifolds


An Introduction To Manifolds
DOWNLOAD
Author : Loring W. Tu
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-10-05

An Introduction To Manifolds written by Loring W. Tu and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-10-05 with Mathematics categories.


Manifolds, the higher-dimensional analogs of smooth curves and surfaces, are fundamental objects in modern mathematics. Combining aspects of algebra, topology, and analysis, manifolds have also been applied to classical mechanics, general relativity, and quantum field theory. In this streamlined introduction to the subject, the theory of manifolds is presented with the aim of helping the reader achieve a rapid mastery of the essential topics. By the end of the book the reader should be able to compute, at least for simple spaces, one of the most basic topological invariants of a manifold, its de Rham cohomology. Along the way, the reader acquires the knowledge and skills necessary for further study of geometry and topology. The requisite point-set topology is included in an appendix of twenty pages; other appendices review facts from real analysis and linear algebra. Hints and solutions are provided to many of the exercises and problems. This work may be used as the text for a one-semester graduate or advanced undergraduate course, as well as by students engaged in self-study. Requiring only minimal undergraduate prerequisites, 'Introduction to Manifolds' is also an excellent foundation for Springer's GTM 82, 'Differential Forms in Algebraic Topology'.



An Introduction To Differential Geometry


An Introduction To Differential Geometry
DOWNLOAD
Author : T. J. Willmore
language : en
Publisher: Courier Corporation
Release Date : 2012-01-01

An Introduction To Differential Geometry written by T. J. Willmore and has been published by Courier Corporation this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-01-01 with Mathematics categories.


A solid introduction to the methods of differential geometry and tensor calculus, this volume is suitable for advanced undergraduate and graduate students of mathematics, physics, and engineering. Rather than a comprehensive account, it offers an introduction to the essential ideas and methods of differential geometry. Part 1 begins by employing vector methods to explore the classical theory of curves and surfaces. An introduction to the differential geometry of surfaces in the large provides students with ideas and techniques involved in global research. Part 2 introduces the concept of a tensor, first in algebra, then in calculus. It covers the basic theory of the absolute calculus and the fundamentals of Riemannian geometry. Worked examples and exercises appear throughout the text.



Differential Topology And Geometry With Applications To Physics


Differential Topology And Geometry With Applications To Physics
DOWNLOAD
Author : Eduardo Nahmad-Achar
language : en
Publisher:
Release Date : 2018

Differential Topology And Geometry With Applications To Physics written by Eduardo Nahmad-Achar and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018 with Geometry, Differential categories.


"Differential geometry has encountered numerous applications in physics. More and more physical concepts can be understood as a direct consequence of geometric principles. The mathematical structure of Maxwell's electrodynamics, of the general theory of relativity, of string theory, and of gauge theories, to name but a few, are of a geometric nature. All of these disciplines require a curved space for the description of a system, and we require a mathematical formalism that can handle the dynamics in such spaces if we wish to go beyond a simple and superficial discussion of physical relationships. This formalism is precisely differential geometry. Even areas like thermodynamics and fluid mechanics greatly benefit from a differential geometric treatment. Not only in physics, but in important branches of mathematics has differential geometry effected important changes. Aimed at graduate students and requiring only linear algebra and differential and integral calculus, this book presents, in a concise and direct manner, the appropriate mathematical formalism and fundamentals of differential topology and differential geometry together with essential applications in many branches of physics." -- Prové de l'editor.