Basic Representation Theory Of Algebras

DOWNLOAD
Download Basic Representation Theory Of Algebras PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Basic Representation Theory Of Algebras book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Basic Representation Theory Of Algebras
DOWNLOAD
Author : Ibrahim Assem
language : en
Publisher: Springer Nature
Release Date : 2020-04-03
Basic Representation Theory Of Algebras written by Ibrahim Assem and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-03 with Mathematics categories.
This textbook introduces the representation theory of algebras by focusing on two of its most important aspects: the Auslander–Reiten theory and the study of the radical of a module category. It starts by introducing and describing several characterisations of the radical of a module category, then presents the central concepts of irreducible morphisms and almost split sequences, before providing the definition of the Auslander–Reiten quiver, which encodes much of the information on the module category. It then turns to the study of endomorphism algebras, leading on one hand to the definition of the Auslander algebra and on the other to tilting theory. The book ends with selected properties of representation-finite algebras, which are now the best understood class of algebras. Intended for graduate students in representation theory, this book is also of interest to any mathematician wanting to learn the fundamentals of this rapidly growing field. A graduate course in non-commutative or homological algebra, which is standard in most universities, is a prerequisite for readers of this book.
Algebras And Representation Theory
DOWNLOAD
Author : Karin Erdmann
language : en
Publisher: Springer
Release Date : 2018-09-07
Algebras And Representation Theory written by Karin Erdmann and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-07 with Mathematics categories.
This carefully written textbook provides an accessible introduction to the representation theory of algebras, including representations of quivers. The book starts with basic topics on algebras and modules, covering fundamental results such as the Jordan-Hölder theorem on composition series, the Artin-Wedderburn theorem on the structure of semisimple algebras and the Krull-Schmidt theorem on indecomposable modules. The authors then go on to study representations of quivers in detail, leading to a complete proof of Gabriel's celebrated theorem characterizing the representation type of quivers in terms of Dynkin diagrams. Requiring only introductory courses on linear algebra and groups, rings and fields, this textbook is aimed at undergraduate students. With numerous examples illustrating abstract concepts, and including more than 200 exercises (with solutions to about a third of them), the book provides an example-driven introduction suitable for self-study and use alongside lecture courses.
Representation Theory
DOWNLOAD
Author : Alexander Zimmermann
language : en
Publisher: Springer
Release Date : 2014-08-15
Representation Theory written by Alexander Zimmermann and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-08-15 with Mathematics categories.
Introducing the representation theory of groups and finite dimensional algebras, first studying basic non-commutative ring theory, this book covers the necessary background on elementary homological algebra and representations of groups up to block theory. It further discusses vertices, defect groups, Green and Brauer correspondences and Clifford theory. Whenever possible the statements are presented in a general setting for more general algebras, such as symmetric finite dimensional algebras over a field. Then, abelian and derived categories are introduced in detail and are used to explain stable module categories, as well as derived categories and their main invariants and links between them. Group theoretical applications of these theories are given – such as the structure of blocks of cyclic defect groups – whenever appropriate. Overall, many methods from the representation theory of algebras are introduced. Representation Theory assumes only the most basic knowledge of linear algebra, groups, rings and fields and guides the reader in the use of categorical equivalences in the representation theory of groups and algebras. As the book is based on lectures, it will be accessible to any graduate student in algebra and can be used for self-study as well as for classroom use.
Introduction To Lie Algebras And Representation Theory
DOWNLOAD
Author : JAMES HUMPHREYS
language : en
Publisher: Springer Science & Business Media
Release Date : 1994-10-27
Introduction To Lie Algebras And Representation Theory written by JAMES HUMPHREYS and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1994-10-27 with Mathematics categories.
This book is designed to introduce the reader to the theory of semisimple Lie algebras over an algebraically closed field of characteristic 0, with emphasis on representations. A good knowledge of linear algebra (including eigenvalues, bilinear forms, euclidean spaces, and tensor products of vector spaces) is presupposed, as well as some acquaintance with the methods of abstract algebra. The first four chapters might well be read by a bright undergraduate; however, the remaining three chapters are admittedly a little more demanding. Besides being useful in many parts of mathematics and physics, the theory of semisimple Lie algebras is inherently attractive, combining as it does a certain amount of depth and a satisfying degree of completeness in its basic results. Since Jacobson's book appeared a decade ago, improvements have been made even in the classical parts of the theory. I have tried to incor porate some of them here and to provide easier access to the subject for non-specialists. For the specialist, the following features should be noted: (I) The Jordan-Chevalley decomposition of linear transformations is emphasized, with "toral" subalgebras replacing the more traditional Cartan subalgebras in the semisimple case. (2) The conjugacy theorem for Cartan subalgebras is proved (following D. J. Winter and G. D. Mostow) by elementary Lie algebra methods, avoiding the use of algebraic geometry.
Introduction To Representation Theory
DOWNLOAD
Author : Pavel I. Etingof
language : en
Publisher: American Mathematical Soc.
Release Date : 2011
Introduction To Representation Theory written by Pavel I. Etingof and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011 with Mathematics categories.
Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics, and quantum field theory. The goal of this book is to give a ``holistic'' introduction to representation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representation theories of groups, Lie algebras, and quivers as special cases. Using this approach, the book covers a number of standard topics in the representation theories of these structures. Theoretical material in the book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book is designed as a textbook for advanced undergraduate and beginning graduate students. It should be accessible to students with a strong background in linear algebra and a basic knowledge of abstract algebra.
Lie Groups Lie Algebras And Representations
DOWNLOAD
Author : Brian Hall
language : en
Publisher: Springer
Release Date : 2015-05-11
Lie Groups Lie Algebras And Representations written by Brian Hall and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-05-11 with Mathematics categories.
This textbook treats Lie groups, Lie algebras and their representations in an elementary but fully rigorous fashion requiring minimal prerequisites. In particular, the theory of matrix Lie groups and their Lie algebras is developed using only linear algebra, and more motivation and intuition for proofs is provided than in most classic texts on the subject. In addition to its accessible treatment of the basic theory of Lie groups and Lie algebras, the book is also noteworthy for including: a treatment of the Baker–Campbell–Hausdorff formula and its use in place of the Frobenius theorem to establish deeper results about the relationship between Lie groups and Lie algebras motivation for the machinery of roots, weights and the Weyl group via a concrete and detailed exposition of the representation theory of sl(3;C) an unconventional definition of semisimplicity that allows for a rapid development of the structure theory of semisimple Lie algebras a self-contained construction of the representations of compact groups, independent of Lie-algebraic arguments The second edition of Lie Groups, Lie Algebras, and Representations contains many substantial improvements and additions, among them: an entirely new part devoted to the structure and representation theory of compact Lie groups; a complete derivation of the main properties of root systems; the construction of finite-dimensional representations of semisimple Lie algebras has been elaborated; a treatment of universal enveloping algebras, including a proof of the Poincaré–Birkhoff–Witt theorem and the existence of Verma modules; complete proofs of the Weyl character formula, the Weyl dimension formula and the Kostant multiplicity formula. Review of the first edition: This is an excellent book. It deserves to, and undoubtedly will, become the standard text for early graduate courses in Lie group theory ... an important addition to the textbook literature ... it is highly recommended. — The Mathematical Gazette
Iwahori Hecke Algebras And Their Representation Theory
DOWNLOAD
Author : Ivan Cherednik
language : en
Publisher: Springer Science & Business Media
Release Date : 2002-12-19
Iwahori Hecke Algebras And Their Representation Theory written by Ivan Cherednik and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002-12-19 with Mathematics categories.
Two basic problems of representation theory are to classify irreducible representations and decompose representations occuring naturally in some other context. Algebras of Iwahori-Hecke type are one of the tools and were, probably, first considered in the context of representation theory of finite groups of Lie type. This volume consists of notes of the courses on Iwahori-Hecke algebras and their representation theory, given during the CIME summer school which took place in 1999 in Martina Franca, Italy.
Representations And Cohomology Volume 2 Cohomology Of Groups And Modules
DOWNLOAD
Author : D. J. Benson
language : en
Publisher: Cambridge University Press
Release Date : 1991-08-22
Representations And Cohomology Volume 2 Cohomology Of Groups And Modules written by D. J. Benson and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1991-08-22 with Mathematics categories.
This is the second of two volumes which will provide an introduction to modern developments in the representation theory of finite groups and associative algebras. The subject is viewed from the perspective of homological algebra and the theory of representations of finite dimensional algebras; the author emphasises modular representations and the homological algebra associated with their categories. This volume concentrates on the cohomology of groups, always with representations in view, however. It begins with a background reference chapter, then proceeds to an overview of the algebraic topology and K-theory associated with cohomology of groups, especially the work of Quillen. Later chapters look at algebraic and topological proofs of the finite generation of the cohomology ring of a finite group, and an algebraic approach to the Steenrod operations in group cohomology. The book cumulates in a chapter dealing with the theory of varieties for modules. Much of the material presented here has never appeared before in book form. Consequently students and research workers studying group theory, and indeed algebra in general, will be grateful to Dr Benson for supplying an exposition of a good deal of the essential results of modern representation theory.
A Journey Through Representation Theory
DOWNLOAD
Author : Caroline Gruson
language : en
Publisher: Springer
Release Date : 2018-10-23
A Journey Through Representation Theory written by Caroline Gruson and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-10-23 with Mathematics categories.
This text covers a variety of topics in representation theory and is intended for graduate students and more advanced researchers who are interested in the field. The book begins with classical representation theory of finite groups over complex numbers and ends with results on representation theory of quivers. The text includes in particular infinite-dimensional unitary representations for abelian groups, Heisenberg groups and SL(2), and representation theory of finite-dimensional algebras. The last chapter is devoted to some applications of quivers, including Harish-Chandra modules for SL(2). Ample examples are provided and some are revisited with a different approach when new methods are introduced, leading to deeper results. Exercises are spread throughout each chapter. Prerequisites include an advanced course in linear algebra that covers Jordan normal forms and tensor products as well as basic results on groups and rings.