Bayesian Analysis Of Stochastic Process Models

DOWNLOAD
Download Bayesian Analysis Of Stochastic Process Models PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Bayesian Analysis Of Stochastic Process Models book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Bayesian Analysis Of Stochastic Process Models
DOWNLOAD
Author : David Insua
language : en
Publisher: John Wiley & Sons
Release Date : 2012-05-07
Bayesian Analysis Of Stochastic Process Models written by David Insua and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-05-07 with Mathematics categories.
Bayesian analysis of complex models based on stochastic processes has in recent years become a growing area. This book provides a unified treatment of Bayesian analysis of models based on stochastic processes, covering the main classes of stochastic processing including modeling, computational, inference, forecasting, decision making and important applied models. Key features: Explores Bayesian analysis of models based on stochastic processes, providing a unified treatment. Provides a thorough introduction for research students. Computational tools to deal with complex problems are illustrated along with real life case studies Looks at inference, prediction and decision making. Researchers, graduate and advanced undergraduate students interested in stochastic processes in fields such as statistics, operations research (OR), engineering, finance, economics, computer science and Bayesian analysis will benefit from reading this book. With numerous applications included, practitioners of OR, stochastic modelling and applied statistics will also find this book useful.
Bayesian Inference For Stochastic Processes
DOWNLOAD
Author : Lyle D. Broemeling
language : en
Publisher: CRC Press
Release Date : 2017-12-12
Bayesian Inference For Stochastic Processes written by Lyle D. Broemeling and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-12-12 with Mathematics categories.
This is the first book designed to introduce Bayesian inference procedures for stochastic processes. There are clear advantages to the Bayesian approach (including the optimal use of prior information). Initially, the book begins with a brief review of Bayesian inference and uses many examples relevant to the analysis of stochastic processes, including the four major types, namely those with discrete time and discrete state space and continuous time and continuous state space. The elements necessary to understanding stochastic processes are then introduced, followed by chapters devoted to the Bayesian analysis of such processes. It is important that a chapter devoted to the fundamental concepts in stochastic processes is included. Bayesian inference (estimation, testing hypotheses, and prediction) for discrete time Markov chains, for Markov jump processes, for normal processes (e.g. Brownian motion and the Ornstein–Uhlenbeck process), for traditional time series, and, lastly, for point and spatial processes are described in detail. Heavy emphasis is placed on many examples taken from biology and other scientific disciplines. In order analyses of stochastic processes, it will use R and WinBUGS. Features: Uses the Bayesian approach to make statistical Inferences about stochastic processes The R package is used to simulate realizations from different types of processes Based on realizations from stochastic processes, the WinBUGS package will provide the Bayesian analysis (estimation, testing hypotheses, and prediction) for the unknown parameters of stochastic processes To illustrate the Bayesian inference, many examples taken from biology, economics, and astronomy will reinforce the basic concepts of the subject A practical approach is implemented by considering realistic examples of interest to the scientific community WinBUGS and R code are provided in the text, allowing the reader to easily verify the results of the inferential procedures found in the many examples of the book Readers with a good background in two areas, probability theory and statistical inference, should be able to master the essential ideas of this book.
Bayesian Analysis Of Infectious Diseases
DOWNLOAD
Author : Lyle D. Broemeling
language : en
Publisher: CRC Press
Release Date : 2021-02-07
Bayesian Analysis Of Infectious Diseases written by Lyle D. Broemeling and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-02-07 with Mathematics categories.
Bayesian Analysis of Infectious Diseases -COVID-19 and Beyond shows how the Bayesian approach can be used to analyze the evolutionary behavior of infectious diseases, including the coronavirus pandemic. The book describes the foundation of Bayesian statistics while explicating the biology and evolutionary behavior of infectious diseases, including viral and bacterial manifestations of the contagion. The book discusses the application of Markov Chains to contagious diseases, previews data analysis models, the epidemic threshold theorem, and basic properties of the infection process. Also described are the chain binomial model for the evolution of epidemics. Features: Represents the first book on infectious disease from a Bayesian perspective. Employs WinBUGS and R to generate observations that follow the course of contagious maladies. Includes discussion of the coronavirus pandemic as well as many examples from the past, including the flu epidemic of 1918-1919. Compares standard non-Bayesian and Bayesian inferences. Offers the R and WinBUGS code on at www.routledge.com/9780367633868
Bayesian Inference And Computation In Reliability And Survival Analysis
DOWNLOAD
Author : Yuhlong Lio
language : en
Publisher: Springer Nature
Release Date : 2022-08-01
Bayesian Inference And Computation In Reliability And Survival Analysis written by Yuhlong Lio and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-08-01 with Mathematics categories.
Bayesian analysis is one of the important tools for statistical modelling and inference. Bayesian frameworks and methods have been successfully applied to solve practical problems in reliability and survival analysis, which have a wide range of real world applications in medical and biological sciences, social and economic sciences, and engineering. In the past few decades, significant developments of Bayesian inference have been made by many researchers, and advancements in computational technology and computer performance has laid the groundwork for new opportunities in Bayesian computation for practitioners. Because these theoretical and technological developments introduce new questions and challenges, and increase the complexity of the Bayesian framework, this book brings together experts engaged in groundbreaking research on Bayesian inference and computation to discuss important issues, with emphasis on applications to reliability and survival analysis. Topics covered are timely and have the potential to influence the interacting worlds of biostatistics, engineering, medical sciences, statistics, and more. The included chapters present current methods, theories, and applications in the diverse area of biostatistical analysis. The volume as a whole serves as reference in driving quality global health research.
Advances In Intelligent Systems And Computing Iv
DOWNLOAD
Author : Natalya Shakhovska
language : en
Publisher: Springer Nature
Release Date : 2019-11-01
Advances In Intelligent Systems And Computing Iv written by Natalya Shakhovska and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-01 with Technology & Engineering categories.
This book reports on new theories and applications in the field of intelligent systems and computing. It covers computational and artificial intelligence methods, as well as advances in computer vision, current issues in big data and cloud computing, computation linguistics, and cyber-physical systems. It also reports on important topics in intelligent information management. Written by active researchers, the respective chapters are based on selected papers presented at the XIV International Scientific and Technical Conference on Computer Science and Information Technologies (CSIT 2019), held on September 17–20, 2019, in Lviv, Ukraine. The conference was jointly organized by the Lviv Polytechnic National University, Ukraine, the Kharkiv National University of Radio Electronics, Ukraine, and the Technical University of Lodz, Poland, under patronage of Ministry of Education and Science of Ukraine. Given its breadth of coverage, the book provides academics and professionals with extensive information and a timely snapshot of the field of intelligent systems, and is sure to foster new discussions and collaborations among different groups.
Random Process Analysis With R
DOWNLOAD
Author : Marco Bittelli
language : en
Publisher: Oxford University Press
Release Date : 2022
Random Process Analysis With R written by Marco Bittelli and has been published by Oxford University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022 with Mathematics categories.
This book presents the key concepts, theory, and computer code written in R, helping readers with limited initial knowledge of random processes to become confident in their understanding and application of these principles in their own research.
Signal Processing In Radar Systems
DOWNLOAD
Author : Vyacheslav Tuzlukov
language : en
Publisher: CRC Press
Release Date : 2017-12-19
Signal Processing In Radar Systems written by Vyacheslav Tuzlukov and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-12-19 with Technology & Engineering categories.
An essential task in radar systems is to find an appropriate solution to the problems related to robust signal processing and the definition of signal parameters. Signal Processing in Radar Systems addresses robust signal processing problems in complex radar systems and digital signal processing subsystems. It also tackles the important issue of defining signal parameters. The book presents problems related to traditional methods of synthesis and analysis of the main digital signal processing operations. It also examines problems related to modern methods of robust signal processing in noise, with a focus on the generalized approach to signal processing in noise under coherent filtering. In addition, the book puts forth a new problem statement and new methods to solve problems of adaptation and control by functioning processes. Taking a systems approach to designing complex radar systems, it offers readers guidance in solving optimization problems. Organized into three parts, the book first discusses the main design principles of the modern robust digital signal processing algorithms used in complex radar systems. The second part covers the main principles of computer system design for these algorithms and provides real-world examples of systems. The third part deals with experimental measurements of the main statistical parameters of stochastic processes. It also defines their estimations for robust signal processing in complex radar systems. Written by an internationally recognized professor and expert in signal processing, this book summarizes investigations carried out over the past 30 years. It supplies practitioners, researchers, and students with general principles for designing the robust digital signal processing algorithms employed by complex radar systems.
Structural Equation Modeling
DOWNLOAD
Author : Jichuan Wang
language : en
Publisher: John Wiley & Sons
Release Date : 2012-07-31
Structural Equation Modeling written by Jichuan Wang and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-07-31 with Social Science categories.
A reference guide for applications of SEM using Mplus Structural Equation Modeling: Applications Using Mplus is intended as both a teaching resource and a reference guide. Written in non-mathematical terms, this book focuses on the conceptual and practical aspects of Structural Equation Modeling (SEM). Basic concepts and examples of various SEM models are demonstrated along with recently developed advanced methods, such as mixture modeling and model-based power analysis and sample size estimate for SEM. The statistical modeling program, Mplus, is also featured and provides researchers with a flexible tool to analyze their data with an easy-to-use interface and graphical displays of data and analysis results. Key features: Presents a useful reference guide for applications of SEM whilst systematically demonstrating various advanced SEM models, such as multi-group and mixture models using Mplus. Discusses and demonstrates various SEM models using both cross-sectional and longitudinal data with both continuous and categorical outcomes. Provides step-by-step instructions of model specification and estimation, as well as detail interpretation of Mplus results. Explores different methods for sample size estimate and statistical power analysis for SEM. By following the examples provided in this book, readers will be able to build their own SEM models using Mplus. Teachers, graduate students, and researchers in social sciences and health studies will also benefit from this book.
The Oxford Handbook Of Applied Bayesian Analysis
DOWNLOAD
Author : Anthony O' Hagan
language : en
Publisher: Oxford University Press
Release Date : 2010-03-18
The Oxford Handbook Of Applied Bayesian Analysis written by Anthony O' Hagan and has been published by Oxford University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-03-18 with Business & Economics categories.
Bayesian Statistics is a dynamic and fast-growing area of statistical research with wide-ranging and far-reaching applications across science, technology, commerce, and industry. This Handbook explores contemporary Bayesian analysis across a variety of techniques and application areas.
Bayesian Thinking Modeling And Computation
DOWNLOAD
Author :
language : en
Publisher: Elsevier
Release Date : 2005-11-29
Bayesian Thinking Modeling And Computation written by and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-11-29 with Mathematics categories.
This volume describes how to develop Bayesian thinking, modelling and computation both from philosophical, methodological and application point of view. It further describes parametric and nonparametric Bayesian methods for modelling and how to use modern computational methods to summarize inferences using simulation. The book covers wide range of topics including objective and subjective Bayesian inferences with a variety of applications in modelling categorical, survival, spatial, spatiotemporal, Epidemiological, software reliability, small area and micro array data. The book concludes with a chapter on how to teach Bayesian thoughts to nonstatisticians. Critical thinking on causal effects Objective Bayesian philosophy Nonparametric Bayesian methodology Simulation based computing techniques Bioinformatics and Biostatistics