Bayesian Analysis Of Stochastic Process Models

DOWNLOAD
Download Bayesian Analysis Of Stochastic Process Models PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Bayesian Analysis Of Stochastic Process Models book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Bayesian Analysis Of Stochastic Process Models
DOWNLOAD
Author : David Insua
language : en
Publisher: John Wiley & Sons
Release Date : 2012-04-02
Bayesian Analysis Of Stochastic Process Models written by David Insua and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-04-02 with Mathematics categories.
Bayesian analysis of complex models based on stochastic processes has in recent years become a growing area. This book provides a unified treatment of Bayesian analysis of models based on stochastic processes, covering the main classes of stochastic processing including modeling, computational, inference, forecasting, decision making and important applied models. Key features: Explores Bayesian analysis of models based on stochastic processes, providing a unified treatment. Provides a thorough introduction for research students. Computational tools to deal with complex problems are illustrated along with real life case studies Looks at inference, prediction and decision making. Researchers, graduate and advanced undergraduate students interested in stochastic processes in fields such as statistics, operations research (OR), engineering, finance, economics, computer science and Bayesian analysis will benefit from reading this book. With numerous applications included, practitioners of OR, stochastic modelling and applied statistics will also find this book useful.
Bayesian Analysis Of Stochastic Process Models
DOWNLOAD
Author : David Insua
language : en
Publisher: John Wiley & Sons
Release Date : 2012-05-07
Bayesian Analysis Of Stochastic Process Models written by David Insua and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-05-07 with Mathematics categories.
Bayesian analysis of complex models based on stochastic processes has in recent years become a growing area. This book provides a unified treatment of Bayesian analysis of models based on stochastic processes, covering the main classes of stochastic processing including modeling, computational, inference, forecasting, decision making and important applied models. Key features: Explores Bayesian analysis of models based on stochastic processes, providing a unified treatment. Provides a thorough introduction for research students. Computational tools to deal with complex problems are illustrated along with real life case studies Looks at inference, prediction and decision making. Researchers, graduate and advanced undergraduate students interested in stochastic processes in fields such as statistics, operations research (OR), engineering, finance, economics, computer science and Bayesian analysis will benefit from reading this book. With numerous applications included, practitioners of OR, stochastic modelling and applied statistics will also find this book useful.
Bayesian Inference For Stochastic Processes
DOWNLOAD
Author : Lyle D. Broemeling
language : en
Publisher: CRC Press
Release Date : 2017-12-12
Bayesian Inference For Stochastic Processes written by Lyle D. Broemeling and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-12-12 with Mathematics categories.
This is the first book designed to introduce Bayesian inference procedures for stochastic processes. There are clear advantages to the Bayesian approach (including the optimal use of prior information). Initially, the book begins with a brief review of Bayesian inference and uses many examples relevant to the analysis of stochastic processes, including the four major types, namely those with discrete time and discrete state space and continuous time and continuous state space. The elements necessary to understanding stochastic processes are then introduced, followed by chapters devoted to the Bayesian analysis of such processes. It is important that a chapter devoted to the fundamental concepts in stochastic processes is included. Bayesian inference (estimation, testing hypotheses, and prediction) for discrete time Markov chains, for Markov jump processes, for normal processes (e.g. Brownian motion and the Ornstein–Uhlenbeck process), for traditional time series, and, lastly, for point and spatial processes are described in detail. Heavy emphasis is placed on many examples taken from biology and other scientific disciplines. In order analyses of stochastic processes, it will use R and WinBUGS. Features: Uses the Bayesian approach to make statistical Inferences about stochastic processes The R package is used to simulate realizations from different types of processes Based on realizations from stochastic processes, the WinBUGS package will provide the Bayesian analysis (estimation, testing hypotheses, and prediction) for the unknown parameters of stochastic processes To illustrate the Bayesian inference, many examples taken from biology, economics, and astronomy will reinforce the basic concepts of the subject A practical approach is implemented by considering realistic examples of interest to the scientific community WinBUGS and R code are provided in the text, allowing the reader to easily verify the results of the inferential procedures found in the many examples of the book Readers with a good background in two areas, probability theory and statistical inference, should be able to master the essential ideas of this book.
Bayesian Data Analysis Third Edition
DOWNLOAD
Author : Andrew Gelman
language : en
Publisher: CRC Press
Release Date : 2013-11-01
Bayesian Data Analysis Third Edition written by Andrew Gelman and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-01 with Mathematics categories.
Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.
Bayesian Analysis Of Infectious Diseases
DOWNLOAD
Author : Lyle D. Broemeling
language : en
Publisher: CRC Press
Release Date : 2021-02-07
Bayesian Analysis Of Infectious Diseases written by Lyle D. Broemeling and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-02-07 with Mathematics categories.
Bayesian Analysis of Infectious Diseases -COVID-19 and Beyond shows how the Bayesian approach can be used to analyze the evolutionary behavior of infectious diseases, including the coronavirus pandemic. The book describes the foundation of Bayesian statistics while explicating the biology and evolutionary behavior of infectious diseases, including viral and bacterial manifestations of the contagion. The book discusses the application of Markov Chains to contagious diseases, previews data analysis models, the epidemic threshold theorem, and basic properties of the infection process. Also described are the chain binomial model for the evolution of epidemics. Features: Represents the first book on infectious disease from a Bayesian perspective. Employs WinBUGS and R to generate observations that follow the course of contagious maladies. Includes discussion of the coronavirus pandemic as well as many examples from the past, including the flu epidemic of 1918-1919. Compares standard non-Bayesian and Bayesian inferences. Offers the R and WinBUGS code on at www.routledge.com/9780367633868
Bayesian Inference And Computation In Reliability And Survival Analysis
DOWNLOAD
Author : Yuhlong Lio
language : en
Publisher: Springer Nature
Release Date : 2022-08-01
Bayesian Inference And Computation In Reliability And Survival Analysis written by Yuhlong Lio and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-08-01 with Mathematics categories.
Bayesian analysis is one of the important tools for statistical modelling and inference. Bayesian frameworks and methods have been successfully applied to solve practical problems in reliability and survival analysis, which have a wide range of real world applications in medical and biological sciences, social and economic sciences, and engineering. In the past few decades, significant developments of Bayesian inference have been made by many researchers, and advancements in computational technology and computer performance has laid the groundwork for new opportunities in Bayesian computation for practitioners. Because these theoretical and technological developments introduce new questions and challenges, and increase the complexity of the Bayesian framework, this book brings together experts engaged in groundbreaking research on Bayesian inference and computation to discuss important issues, with emphasis on applications to reliability and survival analysis. Topics covered are timely and have the potential to influence the interacting worlds of biostatistics, engineering, medical sciences, statistics, and more. The included chapters present current methods, theories, and applications in the diverse area of biostatistical analysis. The volume as a whole serves as reference in driving quality global health research.
Statistical Analysis Of Stochastic Processes In Time
DOWNLOAD
Author : J. K. Lindsey
language : en
Publisher: Cambridge University Press
Release Date : 2004-08-02
Statistical Analysis Of Stochastic Processes In Time written by J. K. Lindsey and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-08-02 with Mathematics categories.
This book was first published in 2004. Many observed phenomena, from the changing health of a patient to values on the stock market, are characterised by quantities that vary over time: stochastic processes are designed to study them. This book introduces practical methods of applying stochastic processes to an audience knowledgeable only in basic statistics. It covers almost all aspects of the subject and presents the theory in an easily accessible form that is highlighted by application to many examples. These examples arise from dozens of areas, from sociology through medicine to engineering. Complementing these are exercise sets making the book suited for introductory courses in stochastic processes. Software (available from www.cambridge.org) is provided for the freely available R system for the reader to apply to all the models presented.
Bayesian Estimation Of Dsge Models
DOWNLOAD
Author : Edward P. Herbst
language : en
Publisher: Princeton University Press
Release Date : 2015-12-29
Bayesian Estimation Of Dsge Models written by Edward P. Herbst and has been published by Princeton University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-12-29 with Business & Economics categories.
Dynamic stochastic general equilibrium (DSGE) models have become one of the workhorses of modern macroeconomics and are extensively used for academic research as well as forecasting and policy analysis at central banks. This book introduces readers to state-of-the-art computational techniques used in the Bayesian analysis of DSGE models. The book covers Markov chain Monte Carlo techniques for linearized DSGE models, novel sequential Monte Carlo methods that can be used for parameter inference, and the estimation of nonlinear DSGE models based on particle filter approximations of the likelihood function. The theoretical foundations of the algorithms are discussed in depth, and detailed empirical applications and numerical illustrations are provided. The book also gives invaluable advice on how to tailor these algorithms to specific applications and assess the accuracy and reliability of the computations. Bayesian Estimation of DSGE Models is essential reading for graduate students, academic researchers, and practitioners at policy institutions.
Advances In Intelligent Systems And Computing Iv
DOWNLOAD
Author : Natalya Shakhovska
language : en
Publisher: Springer Nature
Release Date : 2019-11-01
Advances In Intelligent Systems And Computing Iv written by Natalya Shakhovska and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-01 with Technology & Engineering categories.
This book reports on new theories and applications in the field of intelligent systems and computing. It covers computational and artificial intelligence methods, as well as advances in computer vision, current issues in big data and cloud computing, computation linguistics, and cyber-physical systems. It also reports on important topics in intelligent information management. Written by active researchers, the respective chapters are based on selected papers presented at the XIV International Scientific and Technical Conference on Computer Science and Information Technologies (CSIT 2019), held on September 17–20, 2019, in Lviv, Ukraine. The conference was jointly organized by the Lviv Polytechnic National University, Ukraine, the Kharkiv National University of Radio Electronics, Ukraine, and the Technical University of Lodz, Poland, under patronage of Ministry of Education and Science of Ukraine. Given its breadth of coverage, the book provides academics and professionals with extensive information and a timely snapshot of the field of intelligent systems, and is sure to foster new discussions and collaborations among different groups.
Multivariate Bayesian Statistics
DOWNLOAD
Author : Daniel B. Rowe
language : en
Publisher: CRC Press
Release Date : 2002-11-25
Multivariate Bayesian Statistics written by Daniel B. Rowe and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002-11-25 with Mathematics categories.
Of the two primary approaches to the classic source separation problem, only one does not impose potentially unreasonable model and likelihood constraints: the Bayesian statistical approach. Bayesian methods incorporate the available information regarding the model parameters and not only allow estimation of the sources and mixing coefficients, but