Bayesian Analysis With R For Drug Development

DOWNLOAD
Download Bayesian Analysis With R For Drug Development PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Bayesian Analysis With R For Drug Development book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Bayesian Analysis With R For Drug Development
DOWNLOAD
Author : Harry Yang
language : en
Publisher: CRC Press
Release Date : 2019-06-26
Bayesian Analysis With R For Drug Development written by Harry Yang and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-26 with Mathematics categories.
Drug development is an iterative process. The recent publications of regulatory guidelines further entail a lifecycle approach. Blending data from disparate sources, the Bayesian approach provides a flexible framework for drug development. Despite its advantages, the uptake of Bayesian methodologies is lagging behind in the field of pharmaceutical development. Written specifically for pharmaceutical practitioners, Bayesian Analysis with R for Drug Development: Concepts, Algorithms, and Case Studies, describes a wide range of Bayesian applications to problems throughout pre-clinical, clinical, and Chemistry, Manufacturing, and Control (CMC) development. Authored by two seasoned statisticians in the pharmaceutical industry, the book provides detailed Bayesian solutions to a broad array of pharmaceutical problems. Features Provides a single source of information on Bayesian statistics for drug development Covers a wide spectrum of pre-clinical, clinical, and CMC topics Demonstrates proper Bayesian applications using real-life examples Includes easy-to-follow R code with Bayesian Markov Chain Monte Carlo performed in both JAGS and Stan Bayesian software platforms Offers sufficient background for each problem and detailed description of solutions suitable for practitioners with limited Bayesian knowledge Harry Yang, Ph.D., is Senior Director and Head of Statistical Sciences at AstraZeneca. He has 24 years of experience across all aspects of drug research and development and extensive global regulatory experiences. He has published 6 statistical books, 15 book chapters, and over 90 peer-reviewed papers on diverse scientific and statistical subjects, including 15 joint statistical works with Dr. Novick. He is a frequent invited speaker at national and international conferences. He also developed statistical courses and conducted training at the FDA and USP as well as Peking University. Steven Novick, Ph.D., is Director of Statistical Sciences at AstraZeneca. He has extensively contributed statistical methods to the biopharmaceutical literature. Novick is a skilled Bayesian computer programmer and is frequently invited to speak at conferences, having developed and taught courses in several areas, including drug-combination analysis and Bayesian methods in clinical areas. Novick served on IPAC-RS and has chaired several national statistical conferences.
Bayesian Analysis With R For Drug Development
DOWNLOAD
Author : Harry Yang
language : en
Publisher: CRC Press
Release Date : 2019-06-26
Bayesian Analysis With R For Drug Development written by Harry Yang and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-26 with Mathematics categories.
Drug development is an iterative process. The recent publications of regulatory guidelines further entail a lifecycle approach. Blending data from disparate sources, the Bayesian approach provides a flexible framework for drug development. Despite its advantages, the uptake of Bayesian methodologies is lagging behind in the field of pharmaceutical development. Written specifically for pharmaceutical practitioners, Bayesian Analysis with R for Drug Development: Concepts, Algorithms, and Case Studies, describes a wide range of Bayesian applications to problems throughout pre-clinical, clinical, and Chemistry, Manufacturing, and Control (CMC) development. Authored by two seasoned statisticians in the pharmaceutical industry, the book provides detailed Bayesian solutions to a broad array of pharmaceutical problems. Features Provides a single source of information on Bayesian statistics for drug development Covers a wide spectrum of pre-clinical, clinical, and CMC topics Demonstrates proper Bayesian applications using real-life examples Includes easy-to-follow R code with Bayesian Markov Chain Monte Carlo performed in both JAGS and Stan Bayesian software platforms Offers sufficient background for each problem and detailed description of solutions suitable for practitioners with limited Bayesian knowledge Harry Yang, Ph.D., is Senior Director and Head of Statistical Sciences at AstraZeneca. He has 24 years of experience across all aspects of drug research and development and extensive global regulatory experiences. He has published 6 statistical books, 15 book chapters, and over 90 peer-reviewed papers on diverse scientific and statistical subjects, including 15 joint statistical works with Dr. Novick. He is a frequent invited speaker at national and international conferences. He also developed statistical courses and conducted training at the FDA and USP as well as Peking University. Steven Novick, Ph.D., is Director of Statistical Sciences at AstraZeneca. He has extensively contributed statistical methods to the biopharmaceutical literature. Novick is a skilled Bayesian computer programmer and is frequently invited to speak at conferences, having developed and taught courses in several areas, including drug-combination analysis and Bayesian methods in clinical areas. Novick served on IPAC-RS and has chaired several national statistical conferences.
Bayesian Applications In Pharmaceutical Development
DOWNLOAD
Author : Mani Lakshminarayanan
language : en
Publisher: CRC Press
Release Date : 2019-11-07
Bayesian Applications In Pharmaceutical Development written by Mani Lakshminarayanan and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-07 with Business & Economics categories.
The cost for bringing new medicine from discovery to market has nearly doubled in the last decade and has now reached $2.6 billion. There is an urgent need to make drug development less time-consuming and less costly. Innovative trial designs/ analyses such as the Bayesian approach are essential to meet this need. This book will be the first to provide comprehensive coverage of Bayesian applications across the span of drug development, from discovery, to clinical trial, to manufacturing with practical examples. This book will have a wide appeal to statisticians, scientists, and physicians working in drug development who are motivated to accelerate and streamline the drug development process, as well as students who aspire to work in this field. The advantages of this book are: Provides motivating, worked, practical case examples with easy to grasp models, technical details, and computational codes to run the analyses Balances practical examples with best practices on trial simulation and reporting, as well as regulatory perspectives Chapters written by authors who are individual contributors in their respective topics Dr. Mani Lakshminarayanan is a researcher and statistical consultant with more than 30 years of experience in the pharmaceutical industry. He has published over 50 articles, technical reports, and book chapters besides serving as a referee for several journals. He has a PhD in Statistics from Southern Methodist University, Dallas, Texas and is a Fellow of the American Statistical Association. Dr. Fanni Natanegara has over 15 years of pharmaceutical experience and is currently Principal Research Scientist and Group Leader for the Early Phase Neuroscience Statistics team at Eli Lilly and Company. She played a key role in the Advanced Analytics team to provide Bayesian education and statistical consultation at Eli Lilly. Dr. Natanegara is the chair of the cross industry-regulatory-academic DIA BSWG to ensure that Bayesian methods are appropriately utilized for design and analysis throughout the drug-development process.
Regression Modeling Strategies
DOWNLOAD
Author : Frank E. Harrell
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-03-09
Regression Modeling Strategies written by Frank E. Harrell and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-09 with Mathematics categories.
Many texts are excellent sources of knowledge about individual statistical tools, but the art of data analysis is about choosing and using multiple tools. Instead of presenting isolated techniques, this text emphasizes problem solving strategies that address the many issues arising when developing multivariable models using real data and not standard textbook examples. It includes imputation methods for dealing with missing data effectively, methods for dealing with nonlinear relationships and for making the estimation of transformations a formal part of the modeling process, methods for dealing with "too many variables to analyze and not enough observations," and powerful model validation techniques based on the bootstrap. This text realistically deals with model uncertainty and its effects on inference to achieve "safe data mining".
Bayesian Methods In Pharmaceutical Research
DOWNLOAD
Author : Emmanuel Lesaffre
language : en
Publisher: CRC Press
Release Date : 2020-04-15
Bayesian Methods In Pharmaceutical Research written by Emmanuel Lesaffre and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-15 with Medical categories.
Since the early 2000s, there has been increasing interest within the pharmaceutical industry in the application of Bayesian methods at various stages of the research, development, manufacturing, and health economic evaluation of new health care interventions. In 2010, the first Applied Bayesian Biostatistics conference was held, with the primary objective to stimulate the practical implementation of Bayesian statistics, and to promote the added-value for accelerating the discovery and the delivery of new cures to patients. This book is a synthesis of the conferences and debates, providing an overview of Bayesian methods applied to nearly all stages of research and development, from early discovery to portfolio management. It highlights the value associated with sharing a vision with the regulatory authorities, academia, and pharmaceutical industry, with a view to setting up a common strategy for the appropriate use of Bayesian statistics for the benefit of patients. The book covers: Theory, methods, applications, and computing Bayesian biostatistics for clinical innovative designs Adding value with Real World Evidence Opportunities for rare, orphan diseases, and pediatric development Applied Bayesian biostatistics in manufacturing Decision making and Portfolio management Regulatory perspective and public health policies Statisticians and data scientists involved in the research, development, and approval of new cures will be inspired by the possible applications of Bayesian methods covered in the book. The methods, applications, and computational guidance will enable the reader to apply Bayesian methods in their own pharmaceutical research.
Biomarker Analysis In Clinical Trials With R
DOWNLOAD
Author : Nusrat Rabbee
language : en
Publisher: CRC Press
Release Date : 2020-03-11
Biomarker Analysis In Clinical Trials With R written by Nusrat Rabbee and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-03-11 with Mathematics categories.
The world is awash in data. This volume of data will continue to increase. In the pharmaceutical industry, much of this data explosion has happened around biomarker data. Great statisticians are needed to derive understanding from these data. This book will guide you as you begin the journey into communicating, understanding and synthesizing biomarker data. -From the Foreword, Jared Christensen, Vice President, Biostatistics Early Clinical Development, Pfizer, Inc. Biomarker Analysis in Clinical Trials with R offers practical guidance to statisticians in the pharmaceutical industry on how to incorporate biomarker data analysis in clinical trial studies. The book discusses the appropriate statistical methods for evaluating pharmacodynamic, predictive and surrogate biomarkers for delivering increased value in the drug development process. The topic of combining multiple biomarkers to predict drug response using machine learning is covered. Featuring copious reproducible code and examples in R, the book helps students, researchers and biostatisticians get started in tackling the hard problems of designing and analyzing trials with biomarkers. Features: Analysis of pharmacodynamic biomarkers for lending evidence target modulation. Design and analysis of trials with a predictive biomarker. Framework for analyzing surrogate biomarkers. Methods for combining multiple biomarkers to predict treatment response. Offers a biomarker statistical analysis plan. R code, data and models are given for each part: including regression models for survival and longitudinal data, as well as statistical learning models, such as graphical models and penalized regression models.
Bayesian Adaptive Methods For Clinical Trials
DOWNLOAD
Author : Scott M. Berry
language : en
Publisher: CRC Press
Release Date : 2010-07-19
Bayesian Adaptive Methods For Clinical Trials written by Scott M. Berry and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-07-19 with Mathematics categories.
Already popular in the analysis of medical device trials, adaptive Bayesian designs are increasingly being used in drug development for a wide variety of diseases and conditions, from Alzheimer’s disease and multiple sclerosis to obesity, diabetes, hepatitis C, and HIV. Written by leading pioneers of Bayesian clinical trial designs, Bayesian Adaptive Methods for Clinical Trials explores the growing role of Bayesian thinking in the rapidly changing world of clinical trial analysis. The book first summarizes the current state of clinical trial design and analysis and introduces the main ideas and potential benefits of a Bayesian alternative. It then gives an overview of basic Bayesian methodological and computational tools needed for Bayesian clinical trials. With a focus on Bayesian designs that achieve good power and Type I error, the next chapters present Bayesian tools useful in early (Phase I) and middle (Phase II) clinical trials as well as two recent Bayesian adaptive Phase II studies: the BATTLE and ISPY-2 trials. In the following chapter on late (Phase III) studies, the authors emphasize modern adaptive methods and seamless Phase II–III trials for maximizing information usage and minimizing trial duration. They also describe a case study of a recently approved medical device to treat atrial fibrillation. The concluding chapter covers key special topics, such as the proper use of historical data, equivalence studies, and subgroup analysis. For readers involved in clinical trials research, this book significantly updates and expands their statistical toolkits. The authors provide many detailed examples drawing on real data sets. The R and WinBUGS codes used throughout are available on supporting websites. Scott Berry talks about the book on the CRC Press YouTube Channel.
Bayesian Data Analysis Third Edition
DOWNLOAD
Author : Andrew Gelman
language : en
Publisher: CRC Press
Release Date : 2013-11-01
Bayesian Data Analysis Third Edition written by Andrew Gelman and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-01 with Mathematics categories.
Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.
Theory Of Drug Development
DOWNLOAD
Author : Eric B. Holmgren
language : en
Publisher: CRC Press
Release Date : 2013-10-24
Theory Of Drug Development written by Eric B. Holmgren and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-10-24 with Mathematics categories.
Theory of Drug Development presents a formal quantitative framework for understanding drug development that goes beyond simply describing the properties of the statistics in individual studies. It examines the drug development process from the perspectives of drug companies and regulatory agencies. By quantifying various ideas underlying drug development, the book shows how to systematically address problems, such as: Sizing a phase 2 trial and choosing the range of p-values that will trigger a follow-up phase 3 trial Deciding whether a drug should receive marketing approval based on its phase 2/3 development program and recent experience with other drugs in the same clinical area Determining the impact of adaptive designs on the quality of drugs that receive marketing approval Designing a phase 3 pivotal study that permits the data-driven adjustment of the treatment effect estimate Knowing when enough information has been gathered to show that a drug improves the survival time for the whole patient population Drawing on his extensive work as a statistician in the pharmaceutical industry, the author focuses on the efficient development of drugs and the quantification of evidence in drug development. He provides a rationale for underpowered phase 2 trials based on the notion of efficiency, which leads to the identification of an admissible family of phase 2 designs. He also develops a framework for evaluating the strength of evidence generated by clinical trials. This approach is based on the ratio of power to type 1 error and transcends typical Bayesian and frequentist statistical analyses.
Applications Of Computational Tools In Drug Design And Development
DOWNLOAD
Author : S.N. Koteswara Rao G.
language : en
Publisher: Springer Nature
Release Date : 2025-05-20
Applications Of Computational Tools In Drug Design And Development written by S.N. Koteswara Rao G. and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-05-20 with Medical categories.
This book provides a comprehensive overview of the role of computers and computational tools at different stages of drug discovery and development. Designed to meet the needs of a beginner to advanced learner, the book provides the information on the tools, how they work, with the latest reports on applications in drug design, drug delivery and building network pharmacology models. Part I explores the pharmacological aspects, covering computational simulation of drug delivery at the molecular level, modeling for formulation design, and the revolutionary use of computational fluid dynamics in pharmaceutical processes. Specific applications such as pharmaceutical die filling processes, inhalation aerosol-based targeted drug delivery, and the development of inhalation compounds using in silico modeling tools are discussed. The use of computational tools in cheminformatics and their application in preformulation perspectives for drug delivery are also included. Part II expands the scope to include solubility prediction, absorption prediction, protein binding prediction, bio-permeability prediction, toxicity prediction, and metabolism prediction. It covers the identification of potential sites of metabolism in lead molecules and computer-assisted simulation studies to understand drug-polymer interactions. Recent advances in drug likeness screening using software and online tools are also reviewed. Part III focuses on specific therapeutic areas. The chapters examine the mechanistic understanding of anti-Alzheimer's agents, the design of novel antidiabetic agents, and the exploration of drug design for atherosclerosis. It also covers modern computational intelligence-based drug repurposing for cancer therapeutics, computational analyses of the mechanism of action of antiepileptic agents, and rational approaches for designing antihypertensive agents. The final chapters explore drug discovery and computational strategies in the context of multi-drug-resistant tuberculosis and the network pharmacology approach to uncover the pharmacological mechanisms of natural products. The book will be a useful reference for researchers, students and professionals in the field of life sciences, chemistry, pharmaceutics and bioinformatics.