[PDF] Bayesian Artificial Intelligence - eBooks Review

Bayesian Artificial Intelligence


Bayesian Artificial Intelligence
DOWNLOAD

Download Bayesian Artificial Intelligence PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Bayesian Artificial Intelligence book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Bayesian Reasoning And Machine Learning


Bayesian Reasoning And Machine Learning
DOWNLOAD
Author : David Barber
language : en
Publisher: Cambridge University Press
Release Date : 2012-02-02

Bayesian Reasoning And Machine Learning written by David Barber and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-02-02 with Computers categories.


Machine learning methods extract value from vast data sets quickly and with modest resources. They are established tools in a wide range of industrial applications, including search engines, DNA sequencing, stock market analysis, and robot locomotion, and their use is spreading rapidly. People who know the methods have their choice of rewarding jobs. This hands-on text opens these opportunities to computer science students with modest mathematical backgrounds. It is designed for final-year undergraduates and master's students with limited background in linear algebra and calculus. Comprehensive and coherent, it develops everything from basic reasoning to advanced techniques within the framework of graphical models. Students learn more than a menu of techniques, they develop analytical and problem-solving skills that equip them for the real world. Numerous examples and exercises, both computer based and theoretical, are included in every chapter. Resources for students and instructors, including a MATLAB toolbox, are available online.



Bayesian Learning For Neural Networks


Bayesian Learning For Neural Networks
DOWNLOAD
Author : Radford M. Neal
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Bayesian Learning For Neural Networks written by Radford M. Neal and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


Artificial "neural networks" are widely used as flexible models for classification and regression applications, but questions remain about how the power of these models can be safely exploited when training data is limited. This book demonstrates how Bayesian methods allow complex neural network models to be used without fear of the "overfitting" that can occur with traditional training methods. Insight into the nature of these complex Bayesian models is provided by a theoretical investigation of the priors over functions that underlie them. A practical implementation of Bayesian neural network learning using Markov chain Monte Carlo methods is also described, and software for it is freely available over the Internet. Presupposing only basic knowledge of probability and statistics, this book should be of interest to researchers in statistics, engineering, and artificial intelligence.



Advanced Lectures On Machine Learning


Advanced Lectures On Machine Learning
DOWNLOAD
Author : Olivier Bousquet
language : en
Publisher: Springer Science & Business Media
Release Date : 2004-09-02

Advanced Lectures On Machine Learning written by Olivier Bousquet and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-09-02 with Computers categories.


Machine Learning has become a key enabling technology for many engineering applications, investigating scientific questions and theoretical problems alike. To stimulate discussions and to disseminate new results, a summer school series was started in February 2002, the documentation of which is published as LNAI 2600. This book presents revised lectures of two subsequent summer schools held in 2003 in Canberra, Australia, and in Tübingen, Germany. The tutorial lectures included are devoted to statistical learning theory, unsupervised learning, Bayesian inference, and applications in pattern recognition; they provide in-depth overviews of exciting new developments and contain a large number of references. Graduate students, lecturers, researchers and professionals alike will find this book a useful resource in learning and teaching machine learning.



Bayesian Artificial Intelligence


Bayesian Artificial Intelligence
DOWNLOAD
Author : Kevin B. Korb
language : en
Publisher: CRC Press
Release Date : 2010-12-16

Bayesian Artificial Intelligence written by Kevin B. Korb and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-12-16 with Business & Economics categories.


The second edition of this bestseller provides a practical and accessible introduction to the main concepts, foundation, and applications of Bayesian networks. This edition contains a new chapter on Bayesian network classifiers and a new section on object-oriented Bayesian networks, along with new applications and case studies. It includes a new section that addresses foundational problems with causal discovery and Markov blanket discovery and a new section that covers methods of evaluating causal discovery programs. The book also offers more coverage on the uses of causal interventions to understand and reason with causal Bayesian networks. Supplemental materials are available on the book's website.



Bayesian Artificial Intelligence Second Edition


Bayesian Artificial Intelligence Second Edition
DOWNLOAD
Author : Kevin B. Korb
language : en
Publisher: CRC Press
Release Date : 2010-12-16

Bayesian Artificial Intelligence Second Edition written by Kevin B. Korb and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-12-16 with Business & Economics categories.


Updated and expanded, Bayesian Artificial Intelligence, Second Edition provides a practical and accessible introduction to the main concepts, foundation, and applications of Bayesian networks. It focuses on both the causal discovery of networks and Bayesian inference procedures. Adopting a causal interpretation of Bayesian networks, the authors discuss the use of Bayesian networks for causal modeling. They also draw on their own applied research to illustrate various applications of the technology. New to the Second Edition New chapter on Bayesian network classifiers New section on object-oriented Bayesian networks New section that addresses foundational problems with causal discovery and Markov blanket discovery New section that covers methods of evaluating causal discovery programs Discussions of many common modeling errors New applications and case studies More coverage on the uses of causal interventions to understand and reason with causal Bayesian networks Illustrated with real case studies, the second edition of this bestseller continues to cover the groundwork of Bayesian networks. It presents the elements of Bayesian network technology, automated causal discovery, and learning probabilities from data and shows how to employ these technologies to develop probabilistic expert systems. Web Resource The book’s website at www.csse.monash.edu.au/bai/book/book.html offers a variety of supplemental materials, including example Bayesian networks and data sets. Instructors can email the authors for sample solutions to many of the problems in the text.



Bayesian Networks And Influence Diagrams A Guide To Construction And Analysis


Bayesian Networks And Influence Diagrams A Guide To Construction And Analysis
DOWNLOAD
Author : Uffe B. Kjærulff
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-11-30

Bayesian Networks And Influence Diagrams A Guide To Construction And Analysis written by Uffe B. Kjærulff and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-11-30 with Computers categories.


Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis, Second Edition, provides a comprehensive guide for practitioners who wish to understand, construct, and analyze intelligent systems for decision support based on probabilistic networks. This new edition contains six new sections, in addition to fully-updated examples, tables, figures, and a revised appendix. Intended primarily for practitioners, this book does not require sophisticated mathematical skills or deep understanding of the underlying theory and methods nor does it discuss alternative technologies for reasoning under uncertainty. The theory and methods presented are illustrated through more than 140 examples, and exercises are included for the reader to check his or her level of understanding. The techniques and methods presented for knowledge elicitation, model construction and verification, modeling techniques and tricks, learning models from data, and analyses of models have all been developed and refined on the basis of numerous courses that the authors have held for practitioners worldwide.



Modeling And Reasoning With Bayesian Networks


Modeling And Reasoning With Bayesian Networks
DOWNLOAD
Author : Adnan Darwiche
language : en
Publisher: Cambridge University Press
Release Date : 2009-04-06

Modeling And Reasoning With Bayesian Networks written by Adnan Darwiche and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-04-06 with Computers categories.


This book provides a thorough introduction to the formal foundations and practical applications of Bayesian networks. It provides an extensive discussion of techniques for building Bayesian networks that model real-world situations, including techniques for synthesizing models from design, learning models from data, and debugging models using sensitivity analysis. It also treats exact and approximate inference algorithms at both theoretical and practical levels. The author assumes very little background on the covered subjects, supplying in-depth discussions for theoretically inclined readers and enough practical details to provide an algorithmic cookbook for the system developer.



Bayesian Networks


Bayesian Networks
DOWNLOAD
Author : Olivier Pourret
language : en
Publisher: John Wiley & Sons
Release Date : 2008-04-30

Bayesian Networks written by Olivier Pourret and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-04-30 with Mathematics categories.


Bayesian Networks, the result of the convergence of artificial intelligence with statistics, are growing in popularity. Their versatility and modelling power is now employed across a variety of fields for the purposes of analysis, simulation, prediction and diagnosis. This book provides a general introduction to Bayesian networks, defining and illustrating the basic concepts with pedagogical examples and twenty real-life case studies drawn from a range of fields including medicine, computing, natural sciences and engineering. Designed to help analysts, engineers, scientists and professionals taking part in complex decision processes to successfully implement Bayesian networks, this book equips readers with proven methods to generate, calibrate, evaluate and validate Bayesian networks. The book: Provides the tools to overcome common practical challenges such as the treatment of missing input data, interaction with experts and decision makers, determination of the optimal granularity and size of the model. Highlights the strengths of Bayesian networks whilst also presenting a discussion of their limitations. Compares Bayesian networks with other modelling techniques such as neural networks, fuzzy logic and fault trees. Describes, for ease of comparison, the main features of the major Bayesian network software packages: Netica, Hugin, Elvira and Discoverer, from the point of view of the user. Offers a historical perspective on the subject and analyses future directions for research. Written by leading experts with practical experience of applying Bayesian networks in finance, banking, medicine, robotics, civil engineering, geology, geography, genetics, forensic science, ecology, and industry, the book has much to offer both practitioners and researchers involved in statistical analysis or modelling in any of these fields.



Innovations In Bayesian Networks


Innovations In Bayesian Networks
DOWNLOAD
Author : Dawn E. Holmes
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-10-02

Innovations In Bayesian Networks written by Dawn E. Holmes and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-10-02 with Mathematics categories.


Bayesian networks currently provide one of the most rapidly growing areas of research in computer science and statistics. In compiling this volume we have brought together contributions from some of the most prestigious researchers in this field. Each of the twelve chapters is self-contained. Both theoreticians and application scientists/engineers in the broad area of artificial intelligence will find this volume valuable. It also provides a useful sourcebook for Graduate students since it shows the direction of current research.



Learning Bayesian Networks


Learning Bayesian Networks
DOWNLOAD
Author : Richard E. Neapolitan
language : en
Publisher: Prentice Hall
Release Date : 2004

Learning Bayesian Networks written by Richard E. Neapolitan and has been published by Prentice Hall this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004 with Computers categories.


In this first edition book, methods are discussed for doing inference in Bayesian networks and inference diagrams. Hundreds of examples and problems allow readers to grasp the information. Some of the topics discussed include Pearl's message passing algorithm, Parameter Learning: 2 Alternatives, Parameter Learning r Alternatives, Bayesian Structure Learning, and Constraint-Based Learning. For expert systems developers and decision theorists.