Bayesian Inference With Inla

DOWNLOAD
Download Bayesian Inference With Inla PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Bayesian Inference With Inla book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Bayesian Inference With Inla
DOWNLOAD
Author : Virgilio Gomez-Rubio
language : en
Publisher: CRC Press
Release Date : 2020-02-20
Bayesian Inference With Inla written by Virgilio Gomez-Rubio and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-02-20 with Mathematics categories.
The integrated nested Laplace approximation (INLA) is a recent computational method that can fit Bayesian models in a fraction of the time required by typical Markov chain Monte Carlo (MCMC) methods. INLA focuses on marginal inference on the model parameters of latent Gaussian Markov random fields models and exploits conditional independence properties in the model for computational speed. Bayesian Inference with INLA provides a description of INLA and its associated R package for model fitting. This book describes the underlying methodology as well as how to fit a wide range of models with R. Topics covered include generalized linear mixed-effects models, multilevel models, spatial and spatio-temporal models, smoothing methods, survival analysis, imputation of missing values, and mixture models. Advanced features of the INLA package and how to extend the number of priors and latent models available in the package are discussed. All examples in the book are fully reproducible and datasets and R code are available from the book website. This book will be helpful to researchers from different areas with some background in Bayesian inference that want to apply the INLA method in their work. The examples cover topics on biostatistics, econometrics, education, environmental science, epidemiology, public health, and the social sciences.
Spatial And Spatio Temporal Bayesian Models With R Inla
DOWNLOAD
Author : Marta Blangiardo
language : en
Publisher: John Wiley & Sons
Release Date : 2015-06-02
Spatial And Spatio Temporal Bayesian Models With R Inla written by Marta Blangiardo and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-06-02 with Mathematics categories.
Spatial and Spatio-Temporal Bayesian Models with R-INLA provides a much needed, practically oriented & innovative presentation of the combination of Bayesian methodology and spatial statistics. The authors combine an introduction to Bayesian theory and methodology with a focus on the spatial and spatio-temporal models used within the Bayesian framework and a series of practical examples which allow the reader to link the statistical theory presented to real data problems. The numerous examples from the fields of epidemiology, biostatistics and social science all are coded in the R package R-INLA, which has proven to be a valid alternative to the commonly used Markov Chain Monte Carlo simulations
Geospatial Health Data
DOWNLOAD
Author : Paula Moraga
language : en
Publisher: CRC Press
Release Date : 2020
Geospatial Health Data written by Paula Moraga and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020 with Medical categories.
Geospatial health data are essential to inform public health and policy. These data can be used to quantify disease burden, understand geographic and temporal patterns, identify risk factors, and measure inequalities. Geospatial Health Data: Modeling and Visualization with R-INLA and Shiny describes spatial and spatio-temporal statistical methods and visualization techniques to analyze georeferenced health data in R. The book covers the following topics: Manipulate and transform point, areal, and raster data, Bayesian hierarchical models for disease mapping using areal and geostatistical data, Fit and interpret spatial and spatio-temporal models with the Integrated Nested Laplace Approximations (INLA) and the Stochastic Partial Differential Equation (SPDE) approaches, Create interactive and static visualizations such as disease maps and time plots, Reproducible R Markdown reports, interactive dashboards, and Shiny web applications that facilitate the communication of insights to collaborators and policy makers. The book features fully reproducible examples of several disease and environmental applications using real-world data such as malaria in The Gambia, cancer in Scotland and USA, and air pollution in Spain. Examples in the book focus on health applications, but the approaches covered are also applicable to other fields that use georeferenced data including epidemiology, ecology, demography or criminology. The book provides clear descriptions of the R code for data importing, manipulation, modeling and visualization, as well as the interpretation of the results. This ensures contents are fully reproducible and accessible for students, researchers and practitioners.
Bayesian Modeling Of Spatio Temporal Data With R
DOWNLOAD
Author : Sujit Sahu
language : en
Publisher: CRC Press
Release Date : 2022-03-01
Bayesian Modeling Of Spatio Temporal Data With R written by Sujit Sahu and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-03-01 with Mathematics categories.
Applied sciences, both physical and social, such as atmospheric, biological, climate, demographic, economic, ecological, environmental, oceanic and political, routinely gather large volumes of spatial and spatio-temporal data in order to make wide ranging inference and prediction. Ideally such inferential tasks should be approached through modelling, which aids in estimation of uncertainties in all conclusions drawn from such data. Unified Bayesian modelling, implemented through user friendly software packages, provides a crucial key to unlocking the full power of these methods for solving challenging practical problems. Key features of the book: • Accessible detailed discussion of a majority of all aspects of Bayesian methods and computations with worked examples, numerical illustrations and exercises • A spatial statistics jargon buster chapter that enables the reader to build up a vocabulary without getting clouded in modeling and technicalities • Computation and modeling illustrations are provided with the help of the dedicated R package bmstdr, allowing the reader to use well-known packages and platforms, such as rstan, INLA, spBayes, spTimer, spTDyn, CARBayes, CARBayesST, etc • Included are R code notes detailing the algorithms used to produce all the tables and figures, with data and code available via an online supplement • Two dedicated chapters discuss practical examples of spatio-temporal modeling of point referenced and areal unit data • Throughout, the emphasis has been on validating models by splitting data into test and training sets following on the philosophy of machine learning and data science This book is designed to make spatio-temporal modeling and analysis accessible and understandable to a wide audience of students and researchers, from mathematicians and statisticians to practitioners in the applied sciences. It presents most of the modeling with the help of R commands written in a purposefully developed R package to facilitate spatio-temporal modeling. It does not compromise on rigour, as it presents the underlying theories of Bayesian inference and computation in standalone chapters, which would be appeal those interested in the theoretical details. By avoiding hard core mathematics and calculus, this book aims to be a bridge that removes the statistical knowledge gap from among the applied scientists.
Statistical Modelling And Regression Structures
DOWNLOAD
Author : Thomas Kneib
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-01-12
Statistical Modelling And Regression Structures written by Thomas Kneib and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-01-12 with Mathematics categories.
The contributions collected in this book have been written by well-known statisticians to acknowledge Ludwig Fahrmeir's far-reaching impact on Statistics as a science, while celebrating his 65th birthday. The contributions cover broad areas of contemporary statistical model building, including semiparametric and geoadditive regression, Bayesian inference in complex regression models, time series modelling, statistical regularization, graphical models and stochastic volatility models.
Gaussian Markov Random Fields
DOWNLOAD
Author : Havard Rue
language : en
Publisher: CRC Press
Release Date : 2005-02-18
Gaussian Markov Random Fields written by Havard Rue and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-02-18 with Mathematics categories.
Gaussian Markov Random Field (GMRF) models are most widely used in spatial statistics - a very active area of research in which few up-to-date reference works are available. This is the first book on the subject that provides a unified framework of GMRFs with particular emphasis on the computational aspects. This book includes extensive case-studie
Bernoulli S Fallacy
DOWNLOAD
Author : Aubrey Clayton
language : en
Publisher: Columbia University Press
Release Date : 2021-08-03
Bernoulli S Fallacy written by Aubrey Clayton and has been published by Columbia University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-03 with Mathematics categories.
There is a logical flaw in the statistical methods used across experimental science. This fault is not a minor academic quibble: it underlies a reproducibility crisis now threatening entire disciplines. In an increasingly statistics-reliant society, this same deeply rooted error shapes decisions in medicine, law, and public policy with profound consequences. The foundation of the problem is a misunderstanding of probability and its role in making inferences from observations. Aubrey Clayton traces the history of how statistics went astray, beginning with the groundbreaking work of the seventeenth-century mathematician Jacob Bernoulli and winding through gambling, astronomy, and genetics. Clayton recounts the feuds among rival schools of statistics, exploring the surprisingly human problems that gave rise to the discipline and the all-too-human shortcomings that derailed it. He highlights how influential nineteenth- and twentieth-century figures developed a statistical methodology they claimed was purely objective in order to silence critics of their political agendas, including eugenics. Clayton provides a clear account of the mathematics and logic of probability, conveying complex concepts accessibly for readers interested in the statistical methods that frame our understanding of the world. He contends that we need to take a Bayesian approach—that is, to incorporate prior knowledge when reasoning with incomplete information—in order to resolve the crisis. Ranging across math, philosophy, and culture, Bernoulli’s Fallacy explains why something has gone wrong with how we use data—and how to fix it.
Model Based Geostatistics
DOWNLOAD
Author : Peter Diggle
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-05-26
Model Based Geostatistics written by Peter Diggle and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-05-26 with Science categories.
This volume is the first book-length treatment of model-based geostatistics. The text is expository, emphasizing statistical methods and applications rather than the underlying mathematical theory. Analyses of datasets from a range of scientific contexts feature prominently, and simulations are used to illustrate theoretical results. Readers can reproduce most of the computational results in the book by using the authors' software package, geoR, whose usage is illustrated in a computation section at the end of each chapter. The book assumes a working knowledge of classical and Bayesian methods of inference, linear models, and generalized linear models.
Doing Bayesian Data Analysis
DOWNLOAD
Author : John Kruschke
language : en
Publisher: Academic Press
Release Date : 2014-11-11
Doing Bayesian Data Analysis written by John Kruschke and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-11-11 with Mathematics categories.
Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan, Second Edition provides an accessible approach for conducting Bayesian data analysis, as material is explained clearly with concrete examples. Included are step-by-step instructions on how to carry out Bayesian data analyses in the popular and free software R and WinBugs, as well as new programs in JAGS and Stan. The new programs are designed to be much easier to use than the scripts in the first edition. In particular, there are now compact high-level scripts that make it easy to run the programs on your own data sets. The book is divided into three parts and begins with the basics: models, probability, Bayes' rule, and the R programming language. The discussion then moves to the fundamentals applied to inferring a binomial probability, before concluding with chapters on the generalized linear model. Topics include metric-predicted variable on one or two groups; metric-predicted variable with one metric predictor; metric-predicted variable with multiple metric predictors; metric-predicted variable with one nominal predictor; and metric-predicted variable with multiple nominal predictors. The exercises found in the text have explicit purposes and guidelines for accomplishment. This book is intended for first-year graduate students or advanced undergraduates in statistics, data analysis, psychology, cognitive science, social sciences, clinical sciences, and consumer sciences in business. - Accessible, including the basics of essential concepts of probability and random sampling - Examples with R programming language and JAGS software - Comprehensive coverage of all scenarios addressed by non-Bayesian textbooks: t-tests, analysis of variance (ANOVA) and comparisons in ANOVA, multiple regression, and chi-square (contingency table analysis) - Coverage of experiment planning - R and JAGS computer programming code on website - Exercises have explicit purposes and guidelines for accomplishment - Provides step-by-step instructions on how to conduct Bayesian data analyses in the popular and free software R and WinBugs
Bayesian And Frequentist Regression Methods
DOWNLOAD
Author : Jon Wakefield
language : en
Publisher: Springer
Release Date : 2016-04-01
Bayesian And Frequentist Regression Methods written by Jon Wakefield and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-04-01 with categories.
This book provides a balanced, modern introduction to Bayesian and frequentist methods for regression analysis. The author discusses Frequentist and Bayesian Inferences; Linear Models; Binary Data Models; General Regression Models and Survival Models.