[PDF] Bayesian Methods For Hackers - eBooks Review

Bayesian Methods For Hackers


Bayesian Methods For Hackers
DOWNLOAD

Download Bayesian Methods For Hackers PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Bayesian Methods For Hackers book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Bayesian Methods For Hackers


Bayesian Methods For Hackers
DOWNLOAD
Author : Cameron Davidson-Pilon
language : en
Publisher: Addison-Wesley Professional
Release Date : 2015-09-30

Bayesian Methods For Hackers written by Cameron Davidson-Pilon and has been published by Addison-Wesley Professional this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-09-30 with Computers categories.


Master Bayesian Inference through Practical Examples and Computation–Without Advanced Mathematical Analysis Bayesian methods of inference are deeply natural and extremely powerful. However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice–freeing you to get results using computing power. Bayesian Methods for Hackers illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples and intuitive explanations that have been refined after extensive user feedback. You’ll learn how to use the Markov Chain Monte Carlo algorithm, choose appropriate sample sizes and priors, work with loss functions, and apply Bayesian inference in domains ranging from finance to marketing. Once you’ve mastered these techniques, you’ll constantly turn to this guide for the working PyMC code you need to jumpstart future projects. Coverage includes • Learning the Bayesian “state of mind” and its practical implications • Understanding how computers perform Bayesian inference • Using the PyMC Python library to program Bayesian analyses • Building and debugging models with PyMC • Testing your model’s “goodness of fit” • Opening the “black box” of the Markov Chain Monte Carlo algorithm to see how and why it works • Leveraging the power of the “Law of Large Numbers” • Mastering key concepts, such as clustering, convergence, autocorrelation, and thinning • Using loss functions to measure an estimate’s weaknesses based on your goals and desired outcomes • Selecting appropriate priors and understanding how their influence changes with dataset size • Overcoming the “exploration versus exploitation” dilemma: deciding when “pretty good” is good enough • Using Bayesian inference to improve A/B testing • Solving data science problems when only small amounts of data are available Cameron Davidson-Pilon has worked in many areas of applied mathematics, from the evolutionary dynamics of genes and diseases to stochastic modeling of financial prices. His contributions to the open source community include lifelines, an implementation of survival analysis in Python. Educated at the University of Waterloo and at the Independent University of Moscow, he currently works with the online commerce leader Shopify.



Bayesian Methods For Hackers


Bayesian Methods For Hackers
DOWNLOAD
Author : Cameron Davidson-Pilon
language : en
Publisher:
Release Date : 2016

Bayesian Methods For Hackers written by Cameron Davidson-Pilon and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016 with Bayesian statistical decision theory categories.




Think Bayes


Think Bayes
DOWNLOAD
Author : Allen Downey
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2013-09-12

Think Bayes written by Allen Downey and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-09-12 with Computers categories.


If you know how to program with Python, and know a little about probability, you're ready to tackle Bayesian statistics. This book shows you how to use Python code instead of math to help you learn Bayesian fundamentals. Once you get the math out of the way, you'll be able to apply these techniques to real-world problems.



Bayesian Reasoning And Machine Learning


Bayesian Reasoning And Machine Learning
DOWNLOAD
Author : David Barber
language : en
Publisher: Cambridge University Press
Release Date : 2012-02-02

Bayesian Reasoning And Machine Learning written by David Barber and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-02-02 with Computers categories.


A practical introduction perfect for final-year undergraduate and graduate students without a solid background in linear algebra and calculus.



Machine Learning For Hackers


Machine Learning For Hackers
DOWNLOAD
Author : Drew Conway
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2012-02-13

Machine Learning For Hackers written by Drew Conway and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-02-13 with Computers categories.


If you’re an experienced programmer interested in crunching data, this book will get you started with machine learning—a toolkit of algorithms that enables computers to train themselves to automate useful tasks. Authors Drew Conway and John Myles White help you understand machine learning and statistics tools through a series of hands-on case studies, instead of a traditional math-heavy presentation. Each chapter focuses on a specific problem in machine learning, such as classification, prediction, optimization, and recommendation. Using the R programming language, you’ll learn how to analyze sample datasets and write simple machine learning algorithms. Machine Learning for Hackers is ideal for programmers from any background, including business, government, and academic research. Develop a naïve Bayesian classifier to determine if an email is spam, based only on its text Use linear regression to predict the number of page views for the top 1,000 websites Learn optimization techniques by attempting to break a simple letter cipher Compare and contrast U.S. Senators statistically, based on their voting records Build a “whom to follow” recommendation system from Twitter data



Bayesian Analysis With Python


Bayesian Analysis With Python
DOWNLOAD
Author : Osvaldo Martin
language : en
Publisher:
Release Date : 2016-11-25

Bayesian Analysis With Python written by Osvaldo Martin and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-25 with Bayesian statistical decision theory categories.


Unleash the power and flexibility of the Bayesian frameworkAbout This Book- Simplify the Bayes process for solving complex statistical problems using Python; - Tutorial guide that will take the you through the journey of Bayesian analysis with the help of sample problems and practice exercises; - Learn how and when to use Bayesian analysis in your applications with this guide.Who This Book Is ForStudents, researchers and data scientists who wish to learn Bayesian data analysis with Python and implement probabilistic models in their day to day projects. Programming experience with Python is essential. No previous statistical knowledge is assumed.What You Will Learn- Understand the essentials Bayesian concepts from a practical point of view- Learn how to build probabilistic models using the Python library PyMC3- Acquire the skills to sanity-check your models and modify them if necessary- Add structure to your models and get the advantages of hierarchical models- Find out how different models can be used to answer different data analysis questions - When in doubt, learn to choose between alternative models.- Predict continuous target outcomes using regression analysis or assign classes using logistic and softmax regression.- Learn how to think probabilistically and unleash the power and flexibility of the Bayesian frameworkIn DetailThe purpose of this book is to teach the main concepts of Bayesian data analysis. We will learn how to effectively use PyMC3, a Python library for probabilistic programming, to perform Bayesian parameter estimation, to check models and validate them. This book begins presenting the key concepts of the Bayesian framework and the main advantages of this approach from a practical point of view. Moving on, we will explore the power and flexibility of generalized linear models and how to adapt them to a wide array of problems, including regression and classification. We will also look into mixture models and clustering data, and we will finish with advanced topics like non-parametrics models and Gaussian processes. With the help of Python and PyMC3 you will learn to implement, check and expand Bayesian models to solve data analysis problems.Style and approachBayes algorithms are widely used in statistics, machine learning, artificial intelligence, and data mining. This will be a practical guide allowing the readers to use Bayesian methods for statistical modelling and analysis using Python.



Bayesian Statistics The Fun Way


Bayesian Statistics The Fun Way
DOWNLOAD
Author : Will Kurt
language : en
Publisher: No Starch Press
Release Date : 2019-07-09

Bayesian Statistics The Fun Way written by Will Kurt and has been published by No Starch Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-09 with Mathematics categories.


Fun guide to learning Bayesian statistics and probability through unusual and illustrative examples. Probability and statistics are increasingly important in a huge range of professions. But many people use data in ways they don't even understand, meaning they aren't getting the most from it. Bayesian Statistics the Fun Way will change that. This book will give you a complete understanding of Bayesian statistics through simple explanations and un-boring examples. Find out the probability of UFOs landing in your garden, how likely Han Solo is to survive a flight through an asteroid shower, how to win an argument about conspiracy theories, and whether a burglary really was a burglary, to name a few examples. By using these off-the-beaten-track examples, the author actually makes learning statistics fun. And you'll learn real skills, like how to: - How to measure your own level of uncertainty in a conclusion or belief - Calculate Bayes theorem and understand what it's useful for - Find the posterior, likelihood, and prior to check the accuracy of your conclusions - Calculate distributions to see the range of your data - Compare hypotheses and draw reliable conclusions from them Next time you find yourself with a sheaf of survey results and no idea what to do with them, turn to Bayesian Statistics the Fun Way to get the most value from your data.



Bayesian Data Analysis Third Edition


Bayesian Data Analysis Third Edition
DOWNLOAD
Author : Andrew Gelman
language : en
Publisher: CRC Press
Release Date : 2013-11-01

Bayesian Data Analysis Third Edition written by Andrew Gelman and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-01 with Mathematics categories.


Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.



Bayesian Essentials With R


Bayesian Essentials With R
DOWNLOAD
Author : Jean-Michel Marin
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-10-28

Bayesian Essentials With R written by Jean-Michel Marin and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-10-28 with Computers categories.


This Bayesian modeling book provides a self-contained entry to computational Bayesian statistics. Focusing on the most standard statistical models and backed up by real datasets and an all-inclusive R (CRAN) package called bayess, the book provides an operational methodology for conducting Bayesian inference, rather than focusing on its theoretical and philosophical justifications. Readers are empowered to participate in the real-life data analysis situations depicted here from the beginning. Special attention is paid to the derivation of prior distributions in each case and specific reference solutions are given for each of the models. Similarly, computational details are worked out to lead the reader towards an effective programming of the methods given in the book. In particular, all R codes are discussed with enough detail to make them readily understandable and expandable. Bayesian Essentials with R can be used as a textbook at both undergraduate and graduate levels. It is particularly useful with students in professional degree programs and scientists to analyze data the Bayesian way. The text will also enhance introductory courses on Bayesian statistics. Prerequisites for the book are an undergraduate background in probability and statistics, if not in Bayesian statistics.