[PDF] Become A Python Data Analyst - eBooks Review

Become A Python Data Analyst


Become A Python Data Analyst
DOWNLOAD

Download Become A Python Data Analyst PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Become A Python Data Analyst book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Become A Python Data Analyst


Become A Python Data Analyst
DOWNLOAD
Author : Alvaro Fuentes
language : en
Publisher: Packt Publishing Ltd
Release Date : 2018-08-31

Become A Python Data Analyst written by Alvaro Fuentes and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-08-31 with Computers categories.


Enhance your data analysis and predictive modeling skills using popular Python tools Key Features Cover all fundamental libraries for operation and manipulation of Python for data analysis Implement real-world datasets to perform predictive analytics with Python Access modern data analysis techniques and detailed code with scikit-learn and SciPy Book Description Python is one of the most common and popular languages preferred by leading data analysts and statisticians for working with massive datasets and complex data visualizations. Become a Python Data Analyst introduces Python’s most essential tools and libraries necessary to work with the data analysis process, right from preparing data to performing simple statistical analyses and creating meaningful data visualizations. In this book, we will cover Python libraries such as NumPy, pandas, matplotlib, seaborn, SciPy, and scikit-learn, and apply them in practical data analysis and statistics examples. As you make your way through the chapters, you will learn to efficiently use the Jupyter Notebook to operate and manipulate data using NumPy and the pandas library. In the concluding chapters, you will gain experience in building simple predictive models and carrying out statistical computation and analysis using rich Python tools and proven data analysis techniques. By the end of this book, you will have hands-on experience performing data analysis with Python. What you will learn Explore important Python libraries and learn to install Anaconda distribution Understand the basics of NumPy Produce informative and useful visualizations for analyzing data Perform common statistical calculations Build predictive models and understand the principles of predictive analytics Who this book is for Become a Python Data Analyst is for entry-level data analysts, data engineers, and BI professionals who want to make complete use of Python tools for performing efficient data analysis. Prior knowledge of Python programming is necessary to understand the concepts covered in this book



Python For Data Analysis


Python For Data Analysis
DOWNLOAD
Author : Wes McKinney
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2017-09-25

Python For Data Analysis written by Wes McKinney and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-25 with Computers categories.


Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples



Python For Finance


Python For Finance
DOWNLOAD
Author : Yves J. Hilpisch
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2018-12-05

Python For Finance written by Yves J. Hilpisch and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-12-05 with Computers categories.


The financial industry has recently adopted Python at a tremendous rate, with some of the largest investment banks and hedge funds using it to build core trading and risk management systems. Updated for Python 3, the second edition of this hands-on book helps you get started with the language, guiding developers and quantitative analysts through Python libraries and tools for building financial applications and interactive financial analytics. Using practical examples throughout the book, author Yves Hilpisch also shows you how to develop a full-fledged framework for Monte Carlo simulation-based derivatives and risk analytics, based on a large, realistic case study. Much of the book uses interactive IPython Notebooks.



Microsoft Sql Server 2012 T Sql Fundamentals


Microsoft Sql Server 2012 T Sql Fundamentals
DOWNLOAD
Author : Itzik Ben-Gan
language : en
Publisher: Pearson Education
Release Date : 2012-07-15

Microsoft Sql Server 2012 T Sql Fundamentals written by Itzik Ben-Gan and has been published by Pearson Education this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-07-15 with Computers categories.


Gain a solid understanding of T-SQL—and write better queries Master the fundamentals of Transact-SQL—and develop your own code for querying and modifying data in Microsoft SQL Server 2012. Led by a SQL Server expert, you’ll learn the concepts behind T-SQL querying and programming, and then apply your knowledge with exercises in each chapter. Once you understand the logic behind T-SQL, you’ll quickly learn how to write effective code—whether you’re a programmer or database administrator. Discover how to: Work with programming practices unique to T-SQL Create database tables and define data integrity Query multiple tables using joins and subqueries Simplify code and improve maintainability with table expressions Implement insert, update, delete, and merge data modification strategies Tackle advanced techniques such as window functions, pivoting and grouping sets Control data consistency using isolation levels, and mitigate deadlocks and blocking Take T-SQL to the next level with programmable objects



Become A Python Data Analyst


Become A Python Data Analyst
DOWNLOAD
Author : Alvaro Fuentes
language : en
Publisher:
Release Date : 2017

Become A Python Data Analyst written by Alvaro Fuentes and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017 with categories.


"The Python programming language has become a major player in the world of data science and analytics. This course introduces Python's most important tools and libraries for doing data science; they are known in the community as 'Python's data science stack'. This is a practical course where the viewer will learn through real-world examples how to use the most popular tools for doing data science and analytics with Python."--Resource description page.



Introduction To Machine Learning With Python


Introduction To Machine Learning With Python
DOWNLOAD
Author : Andreas C. Müller
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2016-09-26

Introduction To Machine Learning With Python written by Andreas C. Müller and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-09-26 with Computers categories.


Machine learning has become an integral part of many commercial applications and research projects, but this field is not exclusive to large companies with extensive research teams. If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination. You’ll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Müller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the math behind them. Familiarity with the NumPy and matplotlib libraries will help you get even more from this book. With this book, you’ll learn: Fundamental concepts and applications of machine learning Advantages and shortcomings of widely used machine learning algorithms How to represent data processed by machine learning, including which data aspects to focus on Advanced methods for model evaluation and parameter tuning The concept of pipelines for chaining models and encapsulating your workflow Methods for working with text data, including text-specific processing techniques Suggestions for improving your machine learning and data science skills



Python Data Analytics


Python Data Analytics
DOWNLOAD
Author : Fabio Nelli
language : en
Publisher: Apress
Release Date : 2015-08-25

Python Data Analytics written by Fabio Nelli and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-08-25 with Computers categories.


Python Data Analytics will help you tackle the world of data acquisition and analysis using the power of the Python language. At the heart of this book lies the coverage of pandas, an open source, BSD-licensed library providing high-performance, easy-to-use data structures and data analysis tools for the Python programming language. Author Fabio Nelli expertly shows the strength of the Python programming language when applied to processing, managing and retrieving information. Inside, you will see how intuitive and flexible it is to discover and communicate meaningful patterns of data using Python scripts, reporting systems, and data export. This book examines how to go about obtaining, processing, storing, managing and analyzing data using the Python programming language. You will use Python and other open source tools to wrangle data and tease out interesting and important trends in that data that will allowyou to predict future patterns. Whether you are dealing with sales data, investment data (stocks, bonds, etc.), medical data, web page usage, or any other type of data set, Python can be used to interpret, analyze, and glean information from a pile of numbers and statistics. This book is an invaluable reference with its examples of storing and accessing data in a database; it walks you through the process of report generation; it provides three real world case studies or examples that you can take with you for your everyday analysis needs.



Python For Data Analytics


Python For Data Analytics
DOWNLOAD
Author : Alex Root
language : en
Publisher:
Release Date : 2019-09-06

Python For Data Analytics written by Alex Root and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-09-06 with categories.


Learn data analysis using Python with this easy to follow beginners guide. It covers all aspects of processing, manipulation, crunching, and cleaning data using Python programming language. It has been designed to prepare you for: analyzing data creating relevant data visualizations carrying out statistical analyses for large data estimating the upcoming future trends by using current data and lots more! This book will help you learn the various parts of Python programming language, its libraries, and scientific computation using Python. Learn to practically solve extensive sets of problems related to data analysis. Python is on par with other programming languages like MATLAB, Stata, R, SAS, and others when it comes to data analysis and data visualization. Python's rich set of libraries (mainly Pandas) has grown rapidly in recent years and is considered one of the best among its competitors for tasks related to data manipulation. When combined with Python's own internal solidity, as a general purpose programming language, we can say that it is an excellent choice to build data centric web applications. You will learn how to use the essential Python libraries required for data analysis like NumPy, Pandas, matplotlib, IPython, and SciPy. Each one of them performs a particular functionality for data analysis and you will be surprised at how easy it is. So what are you waiting for? Now is your chance to learn hands on Python with ease. Click the BUY NOW button to get started on your Python journey.



Getting Started With Python Data Analysis


Getting Started With Python Data Analysis
DOWNLOAD
Author : Phuong Vo.T.H
language : en
Publisher: Packt Publishing Ltd
Release Date : 2015-11-04

Getting Started With Python Data Analysis written by Phuong Vo.T.H and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-11-04 with Computers categories.


Learn to use powerful Python libraries for effective data processing and analysis About This Book Learn the basic processing steps in data analysis and how to use Python in this area through supported packages, especially Numpy, Pandas, and Matplotlib Create, manipulate, and analyze your data to extract useful information to optimize your system A hands-on guide to help you learn data analysis using Python Who This Book Is For If you are a Python developer who wants to get started with data analysis and you need a quick introductory guide to the python data analysis libraries, then this book is for you. What You Will Learn Understand the importance of data analysis and get familiar with its processing steps Get acquainted with Numpy to use with arrays and array-oriented computing in data analysis Create effective visualizations to present your data using Matplotlib Process and analyze data using the time series capabilities of Pandas Interact with different kind of database systems, such as file, disk format, Mongo, and Redis Apply the supported Python package to data analysis applications through examples Explore predictive analytics and machine learning algorithms using Scikit-learn, a Python library In Detail Data analysis is the process of applying logical and analytical reasoning to study each component of data. Python is a multi-domain, high-level, programming language. It's often used as a scripting language because of its forgiving syntax and operability with a wide variety of different eco-systems. Python has powerful standard libraries or toolkits such as Pylearn2 and Hebel, which offers a fast, reliable, cross-platform environment for data analysis. With this book, we will get you started with Python data analysis and show you what its advantages are. The book starts by introducing the principles of data analysis and supported libraries, along with NumPy basics for statistic and data processing. Next it provides an overview of the Pandas package and uses its powerful features to solve data processing problems. Moving on, the book takes you through a brief overview of the Matplotlib API and some common plotting functions for DataFrame such as plot. Next, it will teach you to manipulate the time and data structure, and load and store data in a file or database using Python packages. The book will also teach you how to apply powerful packages in Python to process raw data into pure and helpful data using examples. Finally, the book gives you a brief overview of machine learning algorithms, that is, applying data analysis results to make decisions or build helpful products, such as recommendations and predictions using scikit-learn. Style and approach This is an easy-to-follow, step-by-step guide to get you familiar with data analysis and the libraries supported by Python. Topics are explained with real-world examples wherever required.



Python Data Science Handbook


Python Data Science Handbook
DOWNLOAD
Author : Jake VanderPlas
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2016-11-21

Python Data Science Handbook written by Jake VanderPlas and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-11-21 with Computers categories.


For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms