[PDF] Beginning Anomaly Detection Using Python Based Deep Learning - eBooks Review

Beginning Anomaly Detection Using Python Based Deep Learning


Beginning Anomaly Detection Using Python Based Deep Learning
DOWNLOAD

Download Beginning Anomaly Detection Using Python Based Deep Learning PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Beginning Anomaly Detection Using Python Based Deep Learning book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Beginning Anomaly Detection Using Python Based Deep Learning


Beginning Anomaly Detection Using Python Based Deep Learning
DOWNLOAD
Author : Suman Kalyan Adari
language : en
Publisher: Apress
Release Date : 2023-12-19

Beginning Anomaly Detection Using Python Based Deep Learning written by Suman Kalyan Adari and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-12-19 with Computers categories.


This beginner-oriented book will help you understand and perform anomaly detection by learning cutting-edge machine learning and deep learning techniques. This updated second edition focuses on supervised, semi-supervised, and unsupervised approaches to anomaly detection. Over the course of the book, you will learn how to use Keras and PyTorch in practical applications. It also introduces new chapters on GANs and transformers to reflect the latest trends in deep learning. Beginning Anomaly Detection Using Python-Based Deep Learning begins with an introduction to anomaly detection, its importance, and its applications. It then covers core data science and machine learning modeling concepts before delving into traditional machine learning algorithms such as OC-SVM and Isolation Forest for anomaly detection using scikit-learn. Following this, the authors explain the essentials of machine learning and deep learning, and how to implement multilayer perceptrons for supervised anomaly detection in both Keras and PyTorch. From here, the focus shifts to the applications of deep learning models for anomaly detection, including various types of autoencoders, recurrent neural networks (via LSTM), temporal convolutional networks, and transformers, with the latter three architectures applied to time-series anomaly detection. This edition has a new chapter on GANs (Generative Adversarial Networks), as well as new material covering transformer architecture in the context of time-series anomaly detection. After completing this book, you will have a thorough understanding of anomaly detection as well as an assortment of methods to approach it in various contexts, including time-series data. Additionally, you will have gained an introduction to scikit-learn, GANs, transformers, Keras, and PyTorch, empowering you to create your own machine learning- or deep learning-based anomaly detectors. What You Will Learn Understand what anomaly detection is, why it it is important, and how it is applied Grasp the core concepts of machine learning. Master traditional machine learning approaches to anomaly detection using scikit-kearn. Understand deep learning in Python using Keras and PyTorch Process data through pandas and evaluate your model's performance using metrics like F1-score, precision, and recall Apply deep learning to supervised, semi-supervised, and unsupervised anomaly detection tasks for tabular datasets and time series applications Who This Book Is For Data scientists and machine learning engineers of all levels of experience interested in learning the basics of deep learning applications in anomaly detection.



Beginning Anomaly Detection Using Python Based Deep Learning


Beginning Anomaly Detection Using Python Based Deep Learning
DOWNLOAD
Author : Sridhar Alla
language : en
Publisher: Apress
Release Date : 2019-10-10

Beginning Anomaly Detection Using Python Based Deep Learning written by Sridhar Alla and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-10-10 with Computers categories.


Utilize this easy-to-follow beginner's guide to understand how deep learning can be applied to the task of anomaly detection. Using Keras and PyTorch in Python, the book focuses on how various deep learning models can be applied to semi-supervised and unsupervised anomaly detection tasks. This book begins with an explanation of what anomaly detection is, what it is used for, and its importance. After covering statistical and traditional machine learning methods for anomaly detection using Scikit-Learn in Python, the book then provides an introduction to deep learning with details on how to build and train a deep learning model in both Keras and PyTorch before shifting the focus to applications of the following deep learning models to anomaly detection: various types of Autoencoders, Restricted Boltzmann Machines, RNNs & LSTMs, and Temporal Convolutional Networks. The book explores unsupervised and semi-supervised anomaly detection along with the basics oftime series-based anomaly detection. By the end of the book you will have a thorough understanding of the basic task of anomaly detection as well as an assortment of methods to approach anomaly detection, ranging from traditional methods to deep learning. Additionally, you are introduced to Scikit-Learn and are able to create deep learning models in Keras and PyTorch. What You Will Learn Understand what anomaly detection is and why it is important in today's world Become familiar with statistical and traditional machine learning approaches to anomaly detection using Scikit-Learn Know the basics of deep learning in Python using Keras and PyTorch Be aware of basic data science concepts for measuring a model's performance: understand what AUC is, what precision and recall mean, and more Apply deep learning to semi-supervised and unsupervised anomaly detection Who This Book Is For Data scientists and machine learning engineers interested in learning the basics of deep learning applications in anomaly detection



Practical Machine Learning A New Look At Anomaly Detection


Practical Machine Learning A New Look At Anomaly Detection
DOWNLOAD
Author : Ted Dunning
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2014-07-21

Practical Machine Learning A New Look At Anomaly Detection written by Ted Dunning and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-07-21 with Computers categories.


Finding Data Anomalies You Didn't Know to Look For Anomaly detection is the detective work of machine learning: finding the unusual, catching the fraud, discovering strange activity in large and complex datasets. But, unlike Sherlock Holmes, you may not know what the puzzle is, much less what “suspects” you’re looking for. This O’Reilly report uses practical examples to explain how the underlying concepts of anomaly detection work. From banking security to natural sciences, medicine, and marketing, anomaly detection has many useful applications in this age of big data. And the search for anomalies will intensify once the Internet of Things spawns even more new types of data. The concepts described in this report will help you tackle anomaly detection in your own project. Use probabilistic models to predict what’s normal and contrast that to what you observe Set an adaptive threshold to determine which data falls outside of the normal range, using the t-digest algorithm Establish normal fluctuations in complex systems and signals (such as an EKG) with a more adaptive probablistic model Use historical data to discover anomalies in sporadic event streams, such as web traffic Learn how to use deviations in expected behavior to trigger fraud alerts



Hands On Unsupervised Learning Using Python


Hands On Unsupervised Learning Using Python
DOWNLOAD
Author : Ankur A. Patel
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2019-02-21

Hands On Unsupervised Learning Using Python written by Ankur A. Patel and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-02-21 with Computers categories.


Many industry experts consider unsupervised learning the next frontier in artificial intelligence, one that may hold the key to general artificial intelligence. Since the majority of the world's data is unlabeled, conventional supervised learning cannot be applied. Unsupervised learning, on the other hand, can be applied to unlabeled datasets to discover meaningful patterns buried deep in the data, patterns that may be near impossible for humans to uncover. Author Ankur Patel shows you how to apply unsupervised learning using two simple, production-ready Python frameworks: Scikit-learn and TensorFlow using Keras. With code and hands-on examples, data scientists will identify difficult-to-find patterns in data and gain deeper business insight, detect anomalies, perform automatic feature engineering and selection, and generate synthetic datasets. All you need is programming and some machine learning experience to get started. Compare the strengths and weaknesses of the different machine learning approaches: supervised, unsupervised, and reinforcement learning Set up and manage machine learning projects end-to-end Build an anomaly detection system to catch credit card fraud Clusters users into distinct and homogeneous groups Perform semisupervised learning Develop movie recommender systems using restricted Boltzmann machines Generate synthetic images using generative adversarial networks



Practical Machine Learning For Data Analysis Using Python


Practical Machine Learning For Data Analysis Using Python
DOWNLOAD
Author : Abdulhamit Subasi
language : en
Publisher: Academic Press
Release Date : 2020-06-05

Practical Machine Learning For Data Analysis Using Python written by Abdulhamit Subasi and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-05 with Computers categories.


Practical Machine Learning for Data Analysis Using Python is a problem solver's guide for creating real-world intelligent systems. It provides a comprehensive approach with concepts, practices, hands-on examples, and sample code. The book teaches readers the vital skills required to understand and solve different problems with machine learning. It teaches machine learning techniques necessary to become a successful practitioner, through the presentation of real-world case studies in Python machine learning ecosystems. The book also focuses on building a foundation of machine learning knowledge to solve different real-world case studies across various fields, including biomedical signal analysis, healthcare, security, economics, and finance. Moreover, it covers a wide range of machine learning models, including regression, classification, and forecasting. The goal of the book is to help a broad range of readers, including IT professionals, analysts, developers, data scientists, engineers, and graduate students, to solve their own real-world problems. - Offers a comprehensive overview of the application of machine learning tools in data analysis across a wide range of subject areas - Teaches readers how to apply machine learning techniques to biomedical signals, financial data, and healthcare data - Explores important classification and regression algorithms as well as other machine learning techniques - Explains how to use Python to handle data extraction, manipulation, and exploration techniques, as well as how to visualize data spread across multiple dimensions and extract useful features



Artificial Intelligence Applications And Innovations


Artificial Intelligence Applications And Innovations
DOWNLOAD
Author : Ilias Maglogiannis
language : en
Publisher: Springer Nature
Release Date : 2022-06-16

Artificial Intelligence Applications And Innovations written by Ilias Maglogiannis and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-06-16 with Computers categories.


This book constitutes the refereed proceedings of five International Workshops held as parallel events of the 18th IFIP WG 12.5 International Conference on Artificial Intelligence Applications and Innovations, AIAI 2022, virtually and in Hersonissos, Crete, Greece, in June 2022: the 11th Mining Humanistic Data Workshop (MHDW 2022); the 7th 5G-Putting Intelligence to the Network Edge Workshop (5G-PINE 2022); the 1st workshop on AI in Energy, Building and Micro-Grids (AIBMG 2022); the 1st Workshop/Special Session on Machine Learning and Big Data in Health Care (ML@HC 2022); and the 2nd Workshop on Artificial Intelligence in Biomedical Engineering and Informatics (AIBEI 2022). The 35 full papers presented at these workshops were carefully reviewed and selected from 74 submissions.



Python For Finance Cookbook


Python For Finance Cookbook
DOWNLOAD
Author : Eryk Lewinson
language : en
Publisher: Packt Publishing Ltd
Release Date : 2020-01-31

Python For Finance Cookbook written by Eryk Lewinson and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-01-31 with Computers categories.


Solve common and not-so-common financial problems using Python libraries such as NumPy, SciPy, and pandas Key FeaturesUse powerful Python libraries such as pandas, NumPy, and SciPy to analyze your financial dataExplore unique recipes for financial data analysis and processing with PythonEstimate popular financial models such as CAPM and GARCH using a problem-solution approachBook Description Python is one of the most popular programming languages used in the financial industry, with a huge set of accompanying libraries. In this book, you'll cover different ways of downloading financial data and preparing it for modeling. You'll calculate popular indicators used in technical analysis, such as Bollinger Bands, MACD, RSI, and backtest automatic trading strategies. Next, you'll cover time series analysis and models, such as exponential smoothing, ARIMA, and GARCH (including multivariate specifications), before exploring the popular CAPM and the Fama-French three-factor model. You'll then discover how to optimize asset allocation and use Monte Carlo simulations for tasks such as calculating the price of American options and estimating the Value at Risk (VaR). In later chapters, you'll work through an entire data science project in the financial domain. You'll also learn how to solve the credit card fraud and default problems using advanced classifiers such as random forest, XGBoost, LightGBM, and stacked models. You'll then be able to tune the hyperparameters of the models and handle class imbalance. Finally, you'll focus on learning how to use deep learning (PyTorch) for approaching financial tasks. By the end of this book, you’ll have learned how to effectively analyze financial data using a recipe-based approach. What you will learnDownload and preprocess financial data from different sourcesBacktest the performance of automatic trading strategies in a real-world settingEstimate financial econometrics models in Python and interpret their resultsUse Monte Carlo simulations for a variety of tasks such as derivatives valuation and risk assessmentImprove the performance of financial models with the latest Python librariesApply machine learning and deep learning techniques to solve different financial problemsUnderstand the different approaches used to model financial time series dataWho this book is for This book is for financial analysts, data analysts, and Python developers who want to learn how to implement a broad range of tasks in the finance domain. Data scientists looking to devise intelligent financial strategies to perform efficient financial analysis will also find this book useful. Working knowledge of the Python programming language is mandatory to grasp the concepts covered in the book effectively.



Bayesian Learning For Neural Networks


Bayesian Learning For Neural Networks
DOWNLOAD
Author : Radford M. Neal
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Bayesian Learning For Neural Networks written by Radford M. Neal and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


Artificial "neural networks" are widely used as flexible models for classification and regression applications, but questions remain about how the power of these models can be safely exploited when training data is limited. This book demonstrates how Bayesian methods allow complex neural network models to be used without fear of the "overfitting" that can occur with traditional training methods. Insight into the nature of these complex Bayesian models is provided by a theoretical investigation of the priors over functions that underlie them. A practical implementation of Bayesian neural network learning using Markov chain Monte Carlo methods is also described, and software for it is freely available over the Internet. Presupposing only basic knowledge of probability and statistics, this book should be of interest to researchers in statistics, engineering, and artificial intelligence.



Practical Machine Learning For Data Analysis Using Python


Practical Machine Learning For Data Analysis Using Python
DOWNLOAD
Author : Abdulhamit Subasi
language : en
Publisher: Academic Press
Release Date : 2020-06-07

Practical Machine Learning For Data Analysis Using Python written by Abdulhamit Subasi and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-07 with Computers categories.


Practical Machine Learning for Data Analysis Using Python is a problem solver's guide for creating real-world intelligent systems. It provides a comprehensive approach with concepts, practices, hands-on examples, and sample code. The book teaches readers the vital skills required to understand and solve different problems with machine learning. It teaches machine learning techniques necessary to become a successful practitioner, through the presentation of real-world case studies in Python machine learning ecosystems. The book also focuses on building a foundation of machine learning knowledge to solve different real-world case studies across various fields, including biomedical signal analysis, healthcare, security, economics, and finance. Moreover, it covers a wide range of machine learning models, including regression, classification, and forecasting. The goal of the book is to help a broad range of readers, including IT professionals, analysts, developers, data scientists, engineers, and graduate students, to solve their own real-world problems.