[PDF] Bifurcations In Hamiltonian Systems - eBooks Review

Bifurcations In Hamiltonian Systems


Bifurcations In Hamiltonian Systems
DOWNLOAD

Download Bifurcations In Hamiltonian Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Bifurcations In Hamiltonian Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Local And Semi Local Bifurcations In Hamiltonian Dynamical Systems


Local And Semi Local Bifurcations In Hamiltonian Dynamical Systems
DOWNLOAD
Author : Heinz Hanßmann
language : en
Publisher: Springer
Release Date : 2006-10-18

Local And Semi Local Bifurcations In Hamiltonian Dynamical Systems written by Heinz Hanßmann and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-10-18 with Mathematics categories.


This book demonstrates that while elliptic and hyperbolic tori determine the distribution of maximal invariant tori, they themselves form n-parameter families. Therefore, torus bifurcations of high co-dimension may be found in a single given Hamiltonian system, absent untypical conditions or external parameters. The text moves logically from the integrable case, in which symmetries allow for reduction to bifurcating equilibria, to non-integrability, where smooth parametrisations must be replaced by Cantor sets.



Bifurcations In Hamiltonian Systems


Bifurcations In Hamiltonian Systems
DOWNLOAD
Author : Henk Broer
language : en
Publisher: Springer
Release Date : 2003-01-01

Bifurcations In Hamiltonian Systems written by Henk Broer and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-01-01 with Mathematics categories.


The authors consider applications of singularity theory and computer algebra to bifurcations of Hamiltonian dynamical systems. They restrict themselves to the case were the following simplification is possible. Near the equilibrium or (quasi-) periodic solution under consideration the linear part allows approximation by a normalized Hamiltonian system with a torus symmetry. It is assumed that reduction by this symmetry leads to a system with one degree of freedom. The volume focuses on two such reduction methods, the planar reduction (or polar coordinates) method and the reduction by the energy momentum mapping. The one-degree-of-freedom system then is tackled by singularity theory, where computer algebra, in particular, Gröbner basis techniques, are applied. The readership addressed consists of advanced graduate students and researchers in dynamical systems.



Bifurcations In Hamiltonian Systems


Bifurcations In Hamiltonian Systems
DOWNLOAD
Author : Henk Broer
language : en
Publisher:
Release Date : 2014-01-15

Bifurcations In Hamiltonian Systems written by Henk Broer and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-01-15 with categories.




Bifurcations In Hamiltonian Systems


Bifurcations In Hamiltonian Systems
DOWNLOAD
Author : Gerard Anton Lunter
language : en
Publisher:
Release Date : 1999

Bifurcations In Hamiltonian Systems written by Gerard Anton Lunter and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1999 with categories.




The Hamiltonian Hopf Bifurcation


The Hamiltonian Hopf Bifurcation
DOWNLOAD
Author : Jan Cornelis van der Meer
language : en
Publisher: Springer
Release Date : 2006-11-14

The Hamiltonian Hopf Bifurcation written by Jan Cornelis van der Meer and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-11-14 with Mathematics categories.




Elements Of Applied Bifurcation Theory


Elements Of Applied Bifurcation Theory
DOWNLOAD
Author : Yuri Kuznetsov
language : en
Publisher: Springer Science & Business Media
Release Date : 2004-06-29

Elements Of Applied Bifurcation Theory written by Yuri Kuznetsov and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-06-29 with Mathematics categories.


Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.



Normal Forms Melnikov Functions And Bifurcations Of Limit Cycles


Normal Forms Melnikov Functions And Bifurcations Of Limit Cycles
DOWNLOAD
Author : Maoan Han
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-04-23

Normal Forms Melnikov Functions And Bifurcations Of Limit Cycles written by Maoan Han and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-04-23 with Mathematics categories.


Dynamical system theory has developed rapidly over the past fifty years. It is a subject upon which the theory of limit cycles has a significant impact for both theoretical advances and practical solutions to problems. Hopf bifurcation from a center or a focus is integral to the theory of bifurcation of limit cycles, for which normal form theory is a central tool. Although Hopf bifurcation has been studied for more than half a century, and normal form theory for over 100 years, efficient computation in this area is still a challenge with implications for Hilbert’s 16th problem. This book introduces the most recent developments in this field and provides major advances in fundamental theory of limit cycles. Split into two parts, the first focuses on the study of limit cycles bifurcating from Hopf singularity using normal form theory with later application to Hilbert’s 16th problem, while the second considers near Hamiltonian systems using Melnikov function as the main mathematical tool. Classic topics with new results are presented in a clear and concise manner and are accompanied by the liberal use of illustrations throughout. Containing a wealth of examples and structured algorithms that are treated in detail, a good balance between theoretical and applied topics is demonstrated. By including complete Maple programs within the text, this book also enables the reader to reconstruct the majority of formulas provided, facilitating the use of concrete models for study. Through the adoption of an elementary and practical approach, this book will be of use to graduate mathematics students wishing to study the theory of limit cycles as well as scientists, across a number of disciplines, with an interest in the applications of periodic behavior.



Nonlinear Oscillations Dynamical Systems And Bifurcations Of Vector Fields


Nonlinear Oscillations Dynamical Systems And Bifurcations Of Vector Fields
DOWNLOAD
Author : John Guckenheimer
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-11-21

Nonlinear Oscillations Dynamical Systems And Bifurcations Of Vector Fields written by John Guckenheimer and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-21 with Mathematics categories.


From the reviews: "This book is concerned with the application of methods from dynamical systems and bifurcation theories to the study of nonlinear oscillations. Chapter 1 provides a review of basic results in the theory of dynamical systems, covering both ordinary differential equations and discrete mappings. Chapter 2 presents 4 examples from nonlinear oscillations. Chapter 3 contains a discussion of the methods of local bifurcation theory for flows and maps, including center manifolds and normal forms. Chapter 4 develops analytical methods of averaging and perturbation theory. Close analysis of geometrically defined two-dimensional maps with complicated invariant sets is discussed in chapter 5. Chapter 6 covers global homoclinic and heteroclinic bifurcations. The final chapter shows how the global bifurcations reappear in degenerate local bifurcations and ends with several more models of physical problems which display these behaviors." #Book Review - Engineering Societies Library, New York#1 "An attempt to make research tools concerning `strange attractors' developed in the last 20 years available to applied scientists and to make clear to research mathematicians the needs in applied works. Emphasis on geometric and topological solutions of differential equations. Applications mainly drawn from nonlinear oscillations." #American Mathematical Monthly#2



Multiparameter Bifurcation Theory


Multiparameter Bifurcation Theory
DOWNLOAD
Author : Martin Golubitsky
language : en
Publisher: American Mathematical Soc.
Release Date : 1986

Multiparameter Bifurcation Theory written by Martin Golubitsky and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 1986 with Mathematics categories.


This 1985 AMS Summer Research Conference brought together mathematicians interested in multiparameter bifurcation with scientists working on fluid instabilities and chemical reactor dynamics. This proceedings volume demonstrates the mutually beneficial interactions between the mathematical analysis, based on genericity, and experimental studies in these fields. Various papers study steady state bifurcation, Hopf bifurcation to periodic solutions, interactions between modes, dynamic bifurcations, and the role of symmetries in such systems. A section of abstracts at the end of the volume provides guides and pointers to the literature. The mathematical study of multiparameter bifurcation leads to a number of theoretical and practical difficulties, many of which are discussed in these papers. The articles also describe theoretical and experimental studies of chemical reactors, which provide many situations in which to test the mathematical ideas. Other test areas are found in fluid dynamics, particularly in studying the routes to chaos in two laboratory systems, Taylor-Couette flow between rotating cylinders and Rayleigh-Benard convection in a fluid layer.



Bifurcation And Chaos In Complex Systems


Bifurcation And Chaos In Complex Systems
DOWNLOAD
Author :
language : en
Publisher: Elsevier
Release Date : 2006-06-30

Bifurcation And Chaos In Complex Systems written by and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-06-30 with Science categories.


The book presents the recent achievements on bifurcation studies of nonlinear dynamical systems. The contributing authors of the book are all distinguished researchers in this interesting subject area. The first two chapters deal with the fundamental theoretical issues of bifurcation analysis in smooth and non-smooth dynamical systems. The cell mapping methods are presented for global bifurcations in stochastic and deterministic, nonlinear dynamical systems in the third chapter. The fourth chapter studies bifurcations and chaos in time-varying, parametrically excited nonlinear dynamical systems. The fifth chapter presents bifurcation analyses of modal interactions in distributed, nonlinear, dynamical systems of circular thin von Karman plates. The theories, methods and results presented in this book are of great interest to scientists and engineers in a wide range of disciplines. This book can be adopted as references for mathematicians, scientists, engineers and graduate students conducting research in nonlinear dynamical systems.· New Views for Difficult Problems· Novel Ideas and Concepts · Hilbert's 16th Problem· Normal Forms in Polynomial Hamiltonian Systems · Grazing Flow in Non-smooth Dynamical Systems· Stochastic and Fuzzy Nonlinear Dynamical Systems· Fuzzy Bifurcation· Parametrical, Nonlinear Systems· Mode Interactions in nonlinear dynamical systems