[PDF] Big Data Analytics Beyond Hadoop - eBooks Review

Big Data Analytics Beyond Hadoop


Big Data Analytics Beyond Hadoop
DOWNLOAD

Download Big Data Analytics Beyond Hadoop PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Big Data Analytics Beyond Hadoop book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Big Data Analytics Beyond Hadoop


Big Data Analytics Beyond Hadoop
DOWNLOAD
Author : Vijay Srinivas Agneeswaran
language : en
Publisher: FT Press
Release Date : 2014-05-15

Big Data Analytics Beyond Hadoop written by Vijay Srinivas Agneeswaran and has been published by FT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-05-15 with Business & Economics categories.


Master alternative Big Data technologies that can do what Hadoop can't: real-time analytics and iterative machine learning. When most technical professionals think of Big Data analytics today, they think of Hadoop. But there are many cutting-edge applications that Hadoop isn't well suited for, especially real-time analytics and contexts requiring the use of iterative machine learning algorithms. Fortunately, several powerful new technologies have been developed specifically for use cases such as these. Big Data Analytics Beyond Hadoop is the first guide specifically designed to help you take the next steps beyond Hadoop. Dr. Vijay Srinivas Agneeswaran introduces the breakthrough Berkeley Data Analysis Stack (BDAS) in detail, including its motivation, design, architecture, Mesos cluster management, performance, and more. He presents realistic use cases and up-to-date example code for: Spark, the next generation in-memory computing technology from UC Berkeley Storm, the parallel real-time Big Data analytics technology from Twitter GraphLab, the next-generation graph processing paradigm from CMU and the University of Washington (with comparisons to alternatives such as Pregel and Piccolo) Halo also offers architectural and design guidance and code sketches for scaling machine learning algorithms to Big Data, and then realizing them in real-time. He concludes by previewing emerging trends, including real-time video analytics, SDNs, and even Big Data governance, security, and privacy issues. He identifies intriguing startups and new research possibilities, including BDAS extensions and cutting-edge model-driven analytics. Big Data Analytics Beyond Hadoop is an indispensable resource for everyone who wants to reach the cutting edge of Big Data analytics, and stay there: practitioners, architects, programmers, data scientists, researchers, startup entrepreneurs, and advanced students.



Big Data Analytics Beyond Hadoop


Big Data Analytics Beyond Hadoop
DOWNLOAD
Author : Vijay Srinivas Agneeswaram
language : en
Publisher:
Release Date : 2014

Big Data Analytics Beyond Hadoop written by Vijay Srinivas Agneeswaram and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014 with Apache Hadoop categories.


Master alternative Big Data technologies that can do what Hadoop can't: real-time analytics and iterative machine learning. When most technical professionals think of Big Data analytics today, they think of Hadoop. But there are many cutting-edge applications that Hadoop isn't well suited for, especially real-time analytics and contexts requiring the use of iterative machine learning algorithms. Fortunately, several powerful new technologies have been developed specifically for use cases such as these. Big Data Analytics Beyond Hadoop is the first guide specifically designed to help you take the next steps beyond Hadoop. Dr. Vijay Srinivas Agneeswaran introduces the breakthrough Berkeley Data Analysis Stack (BDAS) in detail, including its motivation, design, architecture, Mesos cluster management, performance, and more. He presents realistic use cases and up-to-date example code for:Spark, the next generation in-memory computing technology from UC BerkeleyStorm, the parallel real-time Big Data analytics technology from TwitterGraphLab, the next-generation graph processing paradigm from CMU and the University of Washington (with comparisons to alternatives such as Pregel and Piccolo)Halo also offers architectural and design guidance and code sketches for scaling machine learning algorithms to Big Data, and then realizing them in real-time. He concludes by previewing emerging trends, including real-time video analytics, SDNs, and even Big Data governance, security, and privacy issues. He identifies intriguing startups and new research possibilities, including BDAS extensions and cutting-edge model-driven analytics. Big Data Analytics Beyond Hadoop is an indispensable resource for everyone who wants to reach the cutting edge of Big Data analytics, and stay there: practitioners, architects, programmers, data scientists, researchers, startup entrepreneurs, and advanced students.



Apache Hadoop Yarn


Apache Hadoop Yarn
DOWNLOAD
Author : Arun Murthy
language : en
Publisher: Addison-Wesley Professional
Release Date : 2014-03-14

Apache Hadoop Yarn written by Arun Murthy and has been published by Addison-Wesley Professional this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-03-14 with Computers categories.


“This book is a critically needed resource for the newly released Apache Hadoop 2.0, highlighting YARN as the significant breakthrough that broadens Hadoop beyond the MapReduce paradigm.” —From the Foreword by Raymie Stata, CEO of Altiscale The Insider’s Guide to Building Distributed, Big Data Applications with Apache Hadoop™ YARN Apache Hadoop is helping drive the Big Data revolution. Now, its data processing has been completely overhauled: Apache Hadoop YARN provides resource management at data center scale and easier ways to create distributed applications that process petabytes of data. And now in Apache Hadoop™ YARN, two Hadoop technical leaders show you how to develop new applications and adapt existing code to fully leverage these revolutionary advances. YARN project founder Arun Murthy and project lead Vinod Kumar Vavilapalli demonstrate how YARN increases scalability and cluster utilization, enables new programming models and services, and opens new options beyond Java and batch processing. They walk you through the entire YARN project lifecycle, from installation through deployment. You’ll find many examples drawn from the authors’ cutting-edge experience—first as Hadoop’s earliest developers and implementers at Yahoo! and now as Hortonworks developers moving the platform forward and helping customers succeed with it. Coverage includes YARN’s goals, design, architecture, and components—how it expands the Apache Hadoop ecosystem Exploring YARN on a single node Administering YARN clusters and Capacity Scheduler Running existing MapReduce applications Developing a large-scale clustered YARN application Discovering new open source frameworks that run under YARN



Pro Hadoop Data Analytics


Pro Hadoop Data Analytics
DOWNLOAD
Author : Kerry Koitzsch
language : en
Publisher: Apress
Release Date : 2016-12-29

Pro Hadoop Data Analytics written by Kerry Koitzsch and has been published by Apress this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-12-29 with Computers categories.


Learn advanced analytical techniques and leverage existing tool kits to make your analytic applications more powerful, precise, and efficient. This book provides the right combination of architecture, design, and implementation information to create analytical systems that go beyond the basics of classification, clustering, and recommendation. Pro Hadoop Data Analytics emphasizes best practices to ensure coherent, efficient development. A complete example system will be developed using standard third-party components that consist of the tool kits, libraries, visualization and reporting code, as well as support glue to provide a working and extensible end-to-end system. The book also highlights the importance of end-to-end, flexible, configurable, high-performance data pipeline systems with analytical components as well as appropriate visualization results. You'll discover the importance of mix-and-match or hybrid systems, using different analytical components in one application. This hybrid approach will be prominent in the examples. What You'll Learn Build big data analytic systems with the Hadoop ecosystem Use libraries, tool kits, and algorithms to make development easier and more effective Apply metrics to measure performance and efficiency of components and systems Connect to standard relational databases, noSQL data sources, and more Follow case studies with example components to create your own systems Who This Book Is For Software engineers, architects, and data scientists with an interest in the design and implementation of big data analytical systems using Hadoop, the Hadoop ecosystem, and other associated technologies.



Data Analytics With Hadoop


Data Analytics With Hadoop
DOWNLOAD
Author : Benjamin Bengfort
language : en
Publisher: "O'Reilly Media, Inc."
Release Date : 2016-06

Data Analytics With Hadoop written by Benjamin Bengfort and has been published by "O'Reilly Media, Inc." this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-06 with Computers categories.


Ready to use statistical and machine-learning techniques across large data sets? This practical guide shows you why the Hadoop ecosystem is perfect for the job. Instead of deployment, operations, or software development usually associated with distributed computing, you’ll focus on particular analyses you can build, the data warehousing techniques that Hadoop provides, and higher order data workflows this framework can produce. Data scientists and analysts will learn how to perform a wide range of techniques, from writing MapReduce and Spark applications with Python to using advanced modeling and data management with Spark MLlib, Hive, and HBase. You’ll also learn about the analytical processes and data systems available to build and empower data products that can handle—and actually require—huge amounts of data. Understand core concepts behind Hadoop and cluster computing Use design patterns and parallel analytical algorithms to create distributed data analysis jobs Learn about data management, mining, and warehousing in a distributed context using Apache Hive and HBase Use Sqoop and Apache Flume to ingest data from relational databases Program complex Hadoop and Spark applications with Apache Pig and Spark DataFrames Perform machine learning techniques such as classification, clustering, and collaborative filtering with Spark’s MLlib



Big Data Analytics Systems Algorithms Applications


Big Data Analytics Systems Algorithms Applications
DOWNLOAD
Author : C.S.R. Prabhu
language : en
Publisher: Springer Nature
Release Date : 2019-10-14

Big Data Analytics Systems Algorithms Applications written by C.S.R. Prabhu and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-10-14 with Computers categories.


This book provides a comprehensive survey of techniques, technologies and applications of Big Data and its analysis. The Big Data phenomenon is increasingly impacting all sectors of business and industry, producing an emerging new information ecosystem. On the applications front, the book offers detailed descriptions of various application areas for Big Data Analytics in the important domains of Social Semantic Web Mining, Banking and Financial Services, Capital Markets, Insurance, Advertisement, Recommendation Systems, Bio-Informatics, the IoT and Fog Computing, before delving into issues of security and privacy. With regard to machine learning techniques, the book presents all the standard algorithms for learning – including supervised, semi-supervised and unsupervised techniques such as clustering and reinforcement learning techniques to perform collective Deep Learning. Multi-layered and nonlinear learning for Big Data are also covered. In turn, the book highlights real-life case studies on successful implementations of Big Data Analytics at large IT companies such as Google, Facebook, LinkedIn and Microsoft. Multi-sectorial case studies on domain-based companies such as Deutsche Bank, the power provider Opower, Delta Airlines and a Chinese City Transportation application represent a valuable addition. Given its comprehensive coverage of Big Data Analytics, the book offers a unique resource for undergraduate and graduate students, researchers, educators and IT professionals alike.



Research Anthology On Big Data Analytics Architectures And Applications


Research Anthology On Big Data Analytics Architectures And Applications
DOWNLOAD
Author : Management Association, Information Resources
language : en
Publisher: IGI Global
Release Date : 2021-09-24

Research Anthology On Big Data Analytics Architectures And Applications written by Management Association, Information Resources and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-24 with Computers categories.


Society is now completely driven by data with many industries relying on data to conduct business or basic functions within the organization. With the efficiencies that big data bring to all institutions, data is continuously being collected and analyzed. However, data sets may be too complex for traditional data-processing, and therefore, different strategies must evolve to solve the issue. The field of big data works as a valuable tool for many different industries. The Research Anthology on Big Data Analytics, Architectures, and Applications is a complete reference source on big data analytics that offers the latest, innovative architectures and frameworks and explores a variety of applications within various industries. Offering an international perspective, the applications discussed within this anthology feature global representation. Covering topics such as advertising curricula, driven supply chain, and smart cities, this research anthology is ideal for data scientists, data analysts, computer engineers, software engineers, technologists, government officials, managers, CEOs, professors, graduate students, researchers, and academicians.



Big Data Analytics Strategies For The Smart Grid


Big Data Analytics Strategies For The Smart Grid
DOWNLOAD
Author : Carol L. Stimmel
language : en
Publisher: CRC Press
Release Date : 2016-04-19

Big Data Analytics Strategies For The Smart Grid written by Carol L. Stimmel and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-04-19 with Computers categories.


A comprehensive data analytics program is the only way utilities will be able to meet the challenges of modern grids with operational efficiency, while reconciling the demands of greenhouse gas legislation, and establishing a meaningful return on investment from smart grid deployments. This book addresses the requirements for applying big data technologies and approaches, including Big Data cybersecurity, to the critical infrastructure that makes up the electrical utility grid.



Big Data Analytics


Big Data Analytics
DOWNLOAD
Author : Srinath Srinivasa
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-15

Big Data Analytics written by Srinath Srinivasa and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-15 with Computers categories.


This book constitutes the refereed proceedings of the First International Conference on Big Data Analytics, BDA 2012, held in New Delhi, India, in December 2012. The 5 regular papers and 5 short papers presented were carefully reviewed and selected from 42 submissions. The volume also contains two tutorial papers in the section perspectives on big data analytics. The regular contributions are organized in topical sections on: data analytics applications; knowledge discovery through information extraction; and data models in analytics.



Multimedia Big Data Computing For Iot Applications


Multimedia Big Data Computing For Iot Applications
DOWNLOAD
Author : Sudeep Tanwar
language : en
Publisher: Springer
Release Date : 2019-07-17

Multimedia Big Data Computing For Iot Applications written by Sudeep Tanwar and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-17 with Technology & Engineering categories.


This book considers all aspects of managing the complexity of Multimedia Big Data Computing (MMBD) for IoT applications and develops a comprehensive taxonomy. It also discusses a process model that addresses a number of research challenges associated with MMBD, such as scalability, accessibility, reliability, heterogeneity, and Quality of Service (QoS) requirements, presenting case studies to demonstrate its application. Further, the book examines the layered architecture of MMBD computing and compares the life cycle of both big data and MMBD. Written by leading experts, it also includes numerous solved examples, technical descriptions, scenarios, procedures, and algorithms.