[PDF] Big Data Analytics With Neural Networks Using Matlab - eBooks Review

Big Data Analytics With Neural Networks Using Matlab


Big Data Analytics With Neural Networks Using Matlab
DOWNLOAD

Download Big Data Analytics With Neural Networks Using Matlab PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Big Data Analytics With Neural Networks Using Matlab book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Big Data Analytics With Neural Networks Using Matlab


Big Data Analytics With Neural Networks Using Matlab
DOWNLOAD
Author : J. Smith
language : en
Publisher: Createspace Independent Publishing Platform
Release Date : 2017-02-26

Big Data Analytics With Neural Networks Using Matlab written by J. Smith and has been published by Createspace Independent Publishing Platform this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-02-26 with Big data categories.


Big data analytics is the process of collecting, organizing and analyzing large sets of data (called big data) to discover patterns and other useful information. Big data analytics can help organizations to better understand the information contained within the data and will also help identify the data that is most important to the business and future business decisions. Analysts working with big data basically want the knowledge that comes from analyzing the data. To analyze such a large volume of data, big data analytics is typically performed using specialized software tools and applications for predictive analytics, data mining, text mining, forecasting and data optimization. Collectively these processes are separate but highly integrated functions of high-performance analytics. Using big data tools and software enables an organization to process extremely large volumes of data that a business has collected to determine which data is relevant and can be analyzed to drive better business decisions in the future. Among all these tools highlights MATLAB. MATLAB implements various toolboxes for working on big data analytics, such as Statistics Toolbox and Neural Network Toolbox. This book develops Big Data Analytics applications using MATLAB Neural Network Toolboox. The toolbox includes convolutional neural network and autoencoder deep learning algorithms for image classification and feature learning tasks. To speed up training of large data sets, you can distribute computations and data across multicore processors, GPUs, and computer clusters using Parallel Computing Toolbox. The more important features are the following: - Deep learning, including convolutional neural networks and autoencoders - Parallel computing and GPU support for accelerating training (with Parallel Computing Toolbox) - Supervised learning algorithms, including multilayer, radial basis, learning vector quantization (LVQ), time-delay, nonlinear autoregressive (NARX), and recurrent neural network (RNN) - Unsupervised learning algorithms, including self-organizing maps and competitive layers - Apps for data-fitting, pattern recognition, and clustering - Preprocessing, postprocessing, and network visualization for improving training efficiency and assessing network performance - Simulink(R) blocks for building and evaluating neural networks and for control systems applications Neural networks are composed of simple elements operating in parallel. These elements are inspired by biological nervous systems. As in nature, the connections between elements largely determine the network function. You can train a neural network to perform a particular function by adjusting the values of the connections (weights) between elements.



Big Data Analytics Neural Networks Applications Examples With Matlab


Big Data Analytics Neural Networks Applications Examples With Matlab
DOWNLOAD
Author : CESAR PEREZ LOPEZ
language : en
Publisher: CESAR PEREZ
Release Date : 2020-05-31

Big Data Analytics Neural Networks Applications Examples With Matlab written by CESAR PEREZ LOPEZ and has been published by CESAR PEREZ this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-31 with Computers categories.


MATLAB has the tool Neural Network Toolbox (Deep Learning Toolbox since release 18) that provides algorithms, functions, and apps to create, train, visualize, and simulate neural networks. You can perform classification, regression, clustering, dimensionality reduction, time-series forecasting, and dynamic system modeling and control. The toolbox includes convolutional neural network and autoencoder deep learning algorithms for image classification and feature learning tasks. To speed up training of large data sets, you can distribute computations and data across multicore processors, GPUs, and computer clusters using Parallel Computing Toolbox. This book develops neural network applications using MATLAB.



Data Mining And Big Data Analytics With Neural Networks Using Matlab


Data Mining And Big Data Analytics With Neural Networks Using Matlab
DOWNLOAD
Author : C Perez
language : en
Publisher: Independently Published
Release Date : 2019-05-22

Data Mining And Big Data Analytics With Neural Networks Using Matlab written by C Perez and has been published by Independently Published this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-22 with categories.


The availability of large volumes of data (Big Data) and the generalized use of computer tools has transformed research and data analysis, orienting it towards certain specialized techniques encompassed under the generic name of Analytics (Big Data Analytics) that includes Multivariate Data Analysis (MDA), Data Mining and other Business Intelligence techniques.Data Mining can be defined as a process of discovering new and significant relationships, patterns and trends when examining large amounts of data. The techniques of Data Mining pursue the automatic discovery of the knowledge contained in the information stored in an orderly manner in large databases. These techniques aim to discover patterns, profiles and trends through the analysis of data using advanced statistical techniques of multivariate data analysis.The goal is to allow the researcher-analyst to find a useful solution to the problem raised through a better understanding of the existing data.Data Mining uses two types of techniques: predictive techniques, which trains a model on known input and output data so that it can predict future outputs, and descriptive techniques, which finds hidden patterns or intrinsic structures in input data.



Big Data Analytics Cluster Analysis And Pattern Recognition Examples With Matlab


Big Data Analytics Cluster Analysis And Pattern Recognition Examples With Matlab
DOWNLOAD
Author : CESAR PEREZ LOPEZ
language : en
Publisher: SCIENTIFIC BOOKS
Release Date : 2020-05-31

Big Data Analytics Cluster Analysis And Pattern Recognition Examples With Matlab written by CESAR PEREZ LOPEZ and has been published by SCIENTIFIC BOOKS this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-31 with Computers categories.


Big Data Analytics examines large amounts of data to uncover hidden patterns, correlations and other insights. MATLAB has the tool Neural Network Toolbox (Deep Learning Toolbox from version 18) that provides algorithms, functions, and apps to create, train, visualize, and simulate neural networks. You can perform classification, regression, clustering, dimensionality reduction, time-series forecasting, and dynamic system modeling and control.The toolbox includes convolutional neural network and autoencoder deep learning algorithms for image classification and feature learning tasks. To speed up training of large data sets, you can distribute computations and data across multicore processors, GPUs, and computer clusters using Big Data tools (Parallel Computing Toolbox). Unsupervised learning algorithms, including self-organizing maps and competitive layers-Apps for data-fitting, pattern recognition, and clustering-Preprocessing, postprocessing, and network visualization for improving training efficiency and assessing network performance. his book develops cluster analysis and pattern recognition



Data Mining Big Data Analytics And Machine Learning With Neural Networks Using Matlab


Data Mining Big Data Analytics And Machine Learning With Neural Networks Using Matlab
DOWNLOAD
Author : C Perez
language : en
Publisher: Independently Published
Release Date : 2019-05-23

Data Mining Big Data Analytics And Machine Learning With Neural Networks Using Matlab written by C Perez and has been published by Independently Published this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-23 with categories.


Big data analytics examines large amounts of data to uncover hidden patterns, correlations and other insights. With today's technology, it's possible to analyze your data and get answers from it almost immediately - an effort that's slower and less efficient with more traditional business intelligence solutions.The concept of big data has been around for years; most organizations now understand that if they capture all the data that streams into their businesses, they can apply analytics and get significant value from it. But even in the 1950s, decades before anyone uttered the term "big data," businesses were using basic analytics (essentially numbers in a spreadsheet that were manually examined) to uncover insights and trends.Data Mining can be defined as a process of discovering new and significant relationships, patterns and trends when examining large amounts of data. The techniques of Data Mining pursue the automatic discovery of the knowledge contained in the information stored in an orderly manner in large databases. These techniques aim to discover patterns, profiles and trends through the analysis of data using advanced statistical techniques of multivariate data analysis.The goal is to allow the researcher-analyst to find a useful solution to the problem raised through a better understanding of the existing data.Data Mining uses two types of techniques: predictive techniques, which trains a model on known input and output data so that it can predict future outputs, and descriptive techniques, which finds hidden patterns or intrinsic structures in input data.



Big Data Analytics Using Matlab


Big Data Analytics Using Matlab
DOWNLOAD
Author : L. Abell
language : en
Publisher: Createspace Independent Publishing Platform
Release Date : 2017-09-04

Big Data Analytics Using Matlab written by L. Abell and has been published by Createspace Independent Publishing Platform this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-04 with categories.


Big data analytics examines large amounts of data to uncover hidden patterns, correlations and other insights. With today's technology, it's possible to analyze your data and get answers from it almost immediately - an effort that's slower and less efficient with more traditional business intelligence solutions. A key tool in big data analytics are the neural networks. MATLAB Neural Network Toolbox provides algorithms, pretrained models, and apps to create, train, visualize, and simulate both shallow and deep neural networks. You can perform classification, regression, clustering, dimensionality reduction, time-series forecasting, and dynamic system modeling and control. Deep learning networks include convolutional neural networks (ConvNets, CNNs) and autoencoders for image classification, regression, and feature learning. For small training sets, you can quickly apply deep learning by performing transfer learning with pretrained deep networks. To speed up training on large datasets, you can use Parallel Computing Toolbox to distribute computations and data across multicore processors and GPUs on the desktop, and you can scale up to clusters and clouds (including Amazon EC2 P2 GPU instances) with MATLAB Distributed Computing Server. The Key Features developed in this book are de next: - Deep learning with convolutional neural networks (for classification and regression) and autoencoders (for feature learning) - Transfer learning with pretrained convolutional neural network models - Training and inference with CPUs or multi-GPUs on desktops, clusters, and clouds - Unsupervised learning algorithms, including self-organizing maps and competitive layers - Supervised learning algorithms, including multilayer, radial basis, learning vector quantization (LVQ), time-delay, nonlinear autoregressive (NARX), and recurrent neural network (RNN) - Preprocessing, postprocessing, and network visualization for improving training efficiency and assessing network performance



The 2020 International Conference On Machine Learning And Big Data Analytics For Iot Security And Privacy


The 2020 International Conference On Machine Learning And Big Data Analytics For Iot Security And Privacy
DOWNLOAD
Author : John MacIntyre
language : en
Publisher: Springer Nature
Release Date : 2020-11-03

The 2020 International Conference On Machine Learning And Big Data Analytics For Iot Security And Privacy written by John MacIntyre and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-03 with Computers categories.


This book presents the proceedings of The 2020 International Conference on Machine Learning and Big Data Analytics for IoT Security and Privacy (SPIoT-2020), held in Shanghai, China, on November 6, 2020. Due to the COVID-19 outbreak problem, SPIoT-2020 conference was held online by Tencent Meeting. It provides comprehensive coverage of the latest advances and trends in information technology, science and engineering, addressing a number of broad themes, including novel machine learning and big data analytics methods for IoT security, data mining and statistical modelling for the secure IoT and machine learning-based security detecting protocols, which inspire the development of IoT security and privacy technologies. The contributions cover a wide range of topics: analytics and machine learning applications to IoT security; data-based metrics and risk assessment approaches for IoT; data confidentiality and privacy in IoT; and authentication and access control for data usage in IoT. Outlining promising future research directions, the book is a valuable resource for students, researchers and professionals and provides a useful reference guide for newcomers to the IoT security and privacy field.



Big Data Analytics


Big Data Analytics
DOWNLOAD
Author : Kim H. Pries
language : en
Publisher: CRC Press
Release Date : 2015-02-05

Big Data Analytics written by Kim H. Pries and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-02-05 with Computers categories.


With this book, managers and decision makers are given the tools to make more informed decisions about big data purchasing initiatives. Big Data Analytics: A Practical Guide for Managers not only supplies descriptions of common tools, but also surveys the various products and vendors that supply the big data market.Comparing and contrasting the dif



Big Data Analytics Methods


Big Data Analytics Methods
DOWNLOAD
Author : Peter Ghavami
language : en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date : 2019-12-16

Big Data Analytics Methods written by Peter Ghavami and has been published by Walter de Gruyter GmbH & Co KG this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-16 with Business & Economics categories.


Big Data Analytics Methods unveils secrets to advanced analytics techniques ranging from machine learning, random forest classifiers, predictive modeling, cluster analysis, natural language processing (NLP), Kalman filtering and ensembles of models for optimal accuracy of analysis and prediction. More than 100 analytics techniques and methods provide big data professionals, business intelligence professionals and citizen data scientists insight on how to overcome challenges and avoid common pitfalls and traps in data analytics. The book offers solutions and tips on handling missing data, noisy and dirty data, error reduction and boosting signal to reduce noise. It discusses data visualization, prediction, optimization, artificial intelligence, regression analysis, the Cox hazard model and many analytics using case examples with applications in the healthcare, transportation, retail, telecommunication, consulting, manufacturing, energy and financial services industries. This book's state of the art treatment of advanced data analytics methods and important best practices will help readers succeed in data analytics.



Nature Inspired Algorithms For Big Data Frameworks


Nature Inspired Algorithms For Big Data Frameworks
DOWNLOAD
Author : Banati, Hema
language : en
Publisher: IGI Global
Release Date : 2018-09-28

Nature Inspired Algorithms For Big Data Frameworks written by Banati, Hema and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-09-28 with Computers categories.


As technology continues to become more sophisticated, mimicking natural processes and phenomena becomes more of a reality. Continued research in the field of natural computing enables an understanding of the world around us, in addition to opportunities for manmade computing to mirror the natural processes and systems that have existed for centuries. Nature-Inspired Algorithms for Big Data Frameworks is a collection of innovative research on the methods and applications of extracting meaningful information from data using algorithms that are capable of handling the constraints of processing time, memory usage, and the dynamic and unstructured nature of data. Highlighting a range of topics including genetic algorithms, data classification, and wireless sensor networks, this book is ideally designed for computer engineers, software developers, IT professionals, academicians, researchers, and upper-level students seeking current research on the application of nature and biologically inspired algorithms for handling challenges posed by big data in diverse environments.