Boosting Based Face Detection And Adaptation

DOWNLOAD
Download Boosting Based Face Detection And Adaptation PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Boosting Based Face Detection And Adaptation book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Boosting Based Face Detection And Adaptation
DOWNLOAD
Author : Cha Zhang
language : en
Publisher: Springer Nature
Release Date : 2022-06-01
Boosting Based Face Detection And Adaptation written by Cha Zhang and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-06-01 with Computers categories.
Face detection, because of its vast array of applications, is one of the most active research areas in computer vision. In this book, we review various approaches to face detection developed in the past decade, with more emphasis on boosting-based learning algorithms. We then present a series of algorithms that are empowered by the statistical view of boosting and the concept of multiple instance learning. We start by describing a boosting learning framework that is capable to handle billions of training examples. It differs from traditional bootstrapping schemes in that no intermediate thresholds need to be set during training, yet the total number of negative examples used for feature selection remains constant and focused (on the poor performing ones). A multiple instance pruning scheme is then adopted to set the intermediate thresholds after boosting learning. This algorithm generates detectors that are both fast and accurate. We then present two multiple instance learning schemes for face detection, multiple instance learning boosting (MILBoost) and winner-take-all multiple category boosting (WTA-McBoost). MILBoost addresses the uncertainty in accurately pinpointing the location of the object being detected, while WTA-McBoost addresses the uncertainty in determining the most appropriate subcategory label for multiview object detection. Both schemes can resolve the ambiguity of the labeling process and reduce outliers during training, which leads to improved detector performances. In many applications, a detector trained with generic data sets may not perform optimally in a new environment. We propose detection adaption, which is a promising solution for this problem. We present an adaptation scheme based on the Taylor expansion of the boosting learning objective function, and we propose to store the second order statistics of the generic training data for future adaptation. We show that with a small amount of labeled data in the new environment, the detector's performance can be greatly improved. We also present two interesting applications where boosting learning was applied successfully. The first application is face verification for filtering and ranking image/video search results on celebrities. We present boosted multi-task learning (MTL), yet another boosting learning algorithm that extends MILBoost with a graphical model. Since the available number of training images for each celebrity may be limited, learning individual classifiers for each person may cause overfitting. MTL jointly learns classifiers for multiple people by sharing a few boosting classifiers in order to avoid overfitting. The second application addresses the need of speaker detection in conference rooms. The goal is to find who is speaking, given a microphone array and a panoramic video of the room. We show that by combining audio and visual features in a boosting framework, we can determine the speaker's position very accurately. Finally, we offer our thoughts on future directions for face detection. Table of Contents: A Brief Survey of the Face Detection Literature / Cascade-based Real-Time Face Detection / Multiple Instance Learning for Face Detection / Detector Adaptation / Other Applications / Conclusions and Future Work
Face Detection And Adaptation
DOWNLOAD
Author : Cha Zhang
language : en
Publisher: Morgan & Claypool Publishers
Release Date : 2010-10-10
Face Detection And Adaptation written by Cha Zhang and has been published by Morgan & Claypool Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-10-10 with Computers categories.
Face detection, because of its vast array of applications, is one of the most active research areas in computer vision. In this book, we review various approaches to face detection developed in the past decade, with more emphasis on boosting-based learning algorithms. We then present a series of algorithms that are empowered by the statistical view of boosting and the concept of multiple instance learning. We start by describing a boosting learning framework that is capable to handle billions of training examples. It differs from traditional bootstrapping schemes in that no intermediate thresholds need to be set during training, yet the total number of negative examples used for feature selection remains constant and focused (on the poor performing ones). A multiple instance pruning scheme is then adopted to set the intermediate thresholds after boosting learning. This algorithm generates detectors that are both fast and accurate. We then present two multiple instance learning schemes for face detection, multiple instance learning boosting (MILBoost) and winner-take-all multiple category boosting (WTA-McBoost). MILBoost addresses the uncertainty in accurately pinpointing the location of the object being detected, while WTA-McBoost addresses the uncertainty in determining the most appropriate subcategory label for multiview object detection. Both schemes can resolve the ambiguity of the labeling process and reduce outliers during training, which leads to improved detector performances. In many applications, a detector trained with generic data sets may not perform optimally in a new environment. We propose detection adaption, which is a promising solution for this problem. We present an adaptation scheme based on the Taylor expansion of the boosting learning objective function, and we propose to store the second order statistics of the generic training data for future adaptation. We show that with a small amount of labeled data in the new environment, the detector's performance can be greatly improved. We also present two interesting applications where boosting learning was applied successfully. The first application is face verification for filtering and ranking image/video search results on celebrities. We present boosted multi-task learning (MTL), yet another boosting learning algorithm that extends MILBoost with a graphical model. Since the available number of training images for each celebrity may be limited, learning individual classifiers for each person may cause overfitting. MTL jointly learns classifiers for multiple people by sharing a few boosting classifiers in order to avoid overfitting. The second application addresses the need of speaker detection in conference rooms. The goal is to find who is speaking, given a microphone array and a panoramic video of the room. We show that by combining audio and visual features in a boosting framework, we can determine the speaker's position very accurately. Finally, we offer our thoughts on future directions for face detection. Table of Contents: A Brief Survey of the Face Detection Literature / Cascade-based Real-Time Face Detection / Multiple Instance Learning for Face Detection / Detector Adaptation / Other Applications / Conclusions and Future Work
Image And Video Technology
DOWNLOAD
Author : Reinhard Klette
language : en
Publisher: Springer
Release Date : 2014-01-31
Image And Video Technology written by Reinhard Klette and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-01-31 with Computers categories.
This book constitutes the thoroughly refereed post-conference proceedings of the 6th Pacific Rim Symposium on Image and Video Technology, PSIVT 2013, held in Guanajuato, México in October/November 2013. The total of 43 revised papers was carefully reviewed and selected from 90 submissions. The papers are organized in topical sections on image/video processing and analysis, image/video retrieval and scene understanding, applications of image and video technology, biomedical image processing and analysis, biometrics and image forensics, computational photography and arts, computer and robot vision, pattern recognition and video surveillance.
Ensemble Machine Learning
DOWNLOAD
Author : Cha Zhang
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-02-17
Ensemble Machine Learning written by Cha Zhang and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-02-17 with Computers categories.
It is common wisdom that gathering a variety of views and inputs improves the process of decision making, and, indeed, underpins a democratic society. Dubbed “ensemble learning” by researchers in computational intelligence and machine learning, it is known to improve a decision system’s robustness and accuracy. Now, fresh developments are allowing researchers to unleash the power of ensemble learning in an increasing range of real-world applications. Ensemble learning algorithms such as “boosting” and “random forest” facilitate solutions to key computational issues such as face recognition and are now being applied in areas as diverse as object tracking and bioinformatics. Responding to a shortage of literature dedicated to the topic, this volume offers comprehensive coverage of state-of-the-art ensemble learning techniques, including the random forest skeleton tracking algorithm in the Xbox Kinect sensor, which bypasses the need for game controllers. At once a solid theoretical study and a practical guide, the volume is a windfall for researchers and practitioners alike.
Face Geometry And Appearance Modeling
DOWNLOAD
Author : Zicheng Liu
language : en
Publisher: Cambridge University Press
Release Date : 2011-04-18
Face Geometry And Appearance Modeling written by Zicheng Liu and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-04-18 with Computers categories.
Human faces are familiar to our visual systems. We easily recognize a person's face in arbitrary lighting conditions and in a variety of poses; detect small appearance changes; and notice subtle expression details. Can computer vision systems process face images as well as human vision systems can? Face image processing has potential applications in surveillance, image and video search, social networking and other domains. A comprehensive guide to this fascinating topic, this book provides a systematic description of modeling face geometry and appearance from images, including information on mathematical tools, physical concepts, image processing and computer vision techniques, and concrete prototype systems. The book will be an excellent reference for researchers and graduate students in computer vision, computer graphics and multimedia, as well as application developers who would like to gain a better understanding of the state of the art.
Ict Innovations 2015
DOWNLOAD
Author : Suzana Loshkovska
language : en
Publisher: Springer
Release Date : 2015-10-03
Ict Innovations 2015 written by Suzana Loshkovska and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-10-03 with Computers categories.
This book offers a collection of selected papers presented at the Seventh International Conference on ICT Innovations held in October 2015, in Ohrid, Macedonia, with main topic Emerging Technologies for Better Living. The conference gathered academics, professionals and industrial practitioners that work on developing the emerging technologies, systems, applications in the industrial and business arena especially innovative commercial implementations, novel application of technology, and experience in applying recent ICT research advances to practical solutions.
Web Age Information Management
DOWNLOAD
Author : Feifei Li
language : en
Publisher: Springer
Release Date : 2014-06-14
Web Age Information Management written by Feifei Li and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-06-14 with Computers categories.
This book constitutes the refereed proceedings of the 15th International Conference on Web-Age Information Management, WAIM 2014, held in Macau, China, in June 2014. The 48 revised full papers presented together with 35 short papers were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on information retrieval; recommender systems; query processing and optimization; data mining; data and information quality; information extraction; mobile and pervasive computing; stream, time-series; security and privacy; semantic web; cloud computing; new hardware; crowdsourcing; social computing.
Multi Modal Face Presentation Attack Detection
DOWNLOAD
Author : Jun Wan
language : en
Publisher: Springer Nature
Release Date : 2022-05-31
Multi Modal Face Presentation Attack Detection written by Jun Wan and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-05-31 with Computers categories.
For the last ten years, face biometric research has been intensively studied by the computer vision community. Face recognition systems have been used in mobile, banking, and surveillance systems. For face recognition systems, face spoofing attack detection is a crucial stage that could cause severe security issues in government sectors. Although effective methods for face presentation attack detection have been proposed so far, the problem is still unsolved due to the difficulty in the design of features and methods that can work for new spoofing attacks. In addition, existing datasets for studying the problem are relatively small which hinders the progress in this relevant domain. In order to attract researchers to this important field and push the boundaries of the state of the art on face anti-spoofing detection, we organized the Face Spoofing Attack Workshop and Competition at CVPR 2019, an event part of the ChaLearn Looking at People Series. As part of this event, we released the largest multi-modal face anti-spoofing dataset so far, the CASIA-SURF benchmark. The workshop reunited many researchers from around the world and the challenge attracted more than 300 teams. Some of the novel methodologies proposed in the context of the challenge achieved state-of-the-art performance. In this manuscript, we provide a comprehensive review on face anti-spoofing techniques presented in this joint event and point out directions for future research on the face anti-spoofing field.
Security Technology
DOWNLOAD
Author : Tai-hoon Kim
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-11-29
Security Technology written by Tai-hoon Kim and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-11-29 with Computers categories.
This book comprises selected papers of the International Conferences, SecTech 2011, held as Part of the Future Generation Information Technology Conference, FGIT 2011, in Conjunction with GDC 2011, Jeju Island, Korea, in December 2011. The papers presented were carefully reviewed and selected from numerous submissions and focuse on the various aspects of security technology.
Extreme Value Theory Based Methods For Visual Recognition
DOWNLOAD
Author : Walter J. Scheirer
language : en
Publisher: Springer Nature
Release Date : 2022-06-01
Extreme Value Theory Based Methods For Visual Recognition written by Walter J. Scheirer and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-06-01 with Computers categories.
A common feature of many approaches to modeling sensory statistics is an emphasis on capturing the "average." From early representations in the brain, to highly abstracted class categories in machine learning for classification tasks, central-tendency models based on the Gaussian distribution are a seemingly natural and obvious choice for modeling sensory data. However, insights from neuroscience, psychology, and computer vision suggest an alternate strategy: preferentially focusing representational resources on the extremes of the distribution of sensory inputs. The notion of treating extrema near a decision boundary as features is not necessarily new, but a comprehensive statistical theory of recognition based on extrema is only now just emerging in the computer vision literature. This book begins by introducing the statistical Extreme Value Theory (EVT) for visual recognition. In contrast to central-tendency modeling, it is hypothesized that distributions near decision boundaries form a more powerful model for recognition tasks by focusing coding resources on data that are arguably the most diagnostic features. EVT has several important properties: strong statistical grounding, better modeling accuracy near decision boundaries than Gaussian modeling, the ability to model asymmetric decision boundaries, and accurate prediction of the probability of an event beyond our experience. The second part of the book uses the theory to describe a new class of machine learning algorithms for decision making that are a measurable advance beyond the state-of-the-art. This includes methods for post-recognition score analysis, information fusion, multi-attribute spaces, and calibration of supervised machine learning algorithms.