Causal Inference


Causal Inference
DOWNLOAD

Download Causal Inference PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Causal Inference book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page





Causal Inference


Causal Inference
DOWNLOAD

Author : Miquel A. Hernan
language : en
Publisher: CRC Press
Release Date : 2019-07-07

Causal Inference written by Miquel A. Hernan and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-07 with Medical categories.


The application of causal inference methods is growing exponentially in fields that deal with observational data. Written by pioneers in the field, this practical book presents an authoritative yet accessible overview of the methods and applications of causal inference. With a wide range of detailed, worked examples using real epidemiologic data as well as software for replicating the analyses, the text provides a thorough introduction to the basics of the theory for non-time-varying treatments and the generalization to complex longitudinal data.



Elements Of Causal Inference


Elements Of Causal Inference
DOWNLOAD

Author : Jonas Peters
language : en
Publisher: MIT Press
Release Date : 2017-11-29

Elements Of Causal Inference written by Jonas Peters and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-11-29 with Computers categories.


A concise and self-contained introduction to causal inference, increasingly important in data science and machine learning. The mathematization of causality is a relatively recent development, and has become increasingly important in data science and machine learning. This book offers a self-contained and concise introduction to causal models and how to learn them from data. After explaining the need for causal models and discussing some of the principles underlying causal inference, the book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from observational and interventional data, and how causal ideas could be exploited for classical machine learning problems. All of these topics are discussed first in terms of two variables and then in the more general multivariate case. The bivariate case turns out to be a particularly hard problem for causal learning because there are no conditional independences as used by classical methods for solving multivariate cases. The authors consider analyzing statistical asymmetries between cause and effect to be highly instructive, and they report on their decade of intensive research into this problem. The book is accessible to readers with a background in machine learning or statistics, and can be used in graduate courses or as a reference for researchers. The text includes code snippets that can be copied and pasted, exercises, and an appendix with a summary of the most important technical concepts.



Causal Inference


Causal Inference
DOWNLOAD

Author : Scott Cunningham
language : en
Publisher: Yale University Press
Release Date : 2021-01-26

Causal Inference written by Scott Cunningham and has been published by Yale University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-01-26 with Business & Economics categories.


An accessible, contemporary introduction to the methods for determining cause and effect in the social sciences "Causation versus correlation has been the basis of arguments--economic and otherwise--since the beginning of time. Causal Inference: The Mixtape uses legit real-world examples that I found genuinely thought-provoking. It's rare that a book prompts readers to expand their outlook; this one did for me."--Marvin Young (Young MC) Causal inference encompasses the tools that allow social scientists to determine what causes what. In a messy world, causal inference is what helps establish the causes and effects of the actions being studied--for example, the impact (or lack thereof) of increases in the minimum wage on employment, the effects of early childhood education on incarceration later in life, or the influence on economic growth of introducing malaria nets in developing regions. Scott Cunningham introduces students and practitioners to the methods necessary to arrive at meaningful answers to the questions of causation, using a range of modeling techniques and coding instructions for both the R and the Stata programming languages.



Fundamentals Of Causal Inference


Fundamentals Of Causal Inference
DOWNLOAD

Author : Babette A. Brumback
language : en
Publisher: CRC Press
Release Date : 2021-11-10

Fundamentals Of Causal Inference written by Babette A. Brumback and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11-10 with Mathematics categories.


One of the primary motivations for clinical trials and observational studies of humans is to infer cause and effect. Disentangling causation from confounding is of utmost importance. Fundamentals of Causal Inference explains and relates different methods of confounding adjustment in terms of potential outcomes and graphical models, including standardization, difference-in-differences estimation, the front-door method, instrumental variables estimation, and propensity score methods. It also covers effect-measure modification, precision variables, mediation analyses, and time-dependent confounding. Several real data examples, simulation studies, and analyses using R motivate the methods throughout. The book assumes familiarity with basic statistics and probability, regression, and R and is suitable for seniors or graduate students in statistics, biostatistics, and data science as well as PhD students in a wide variety of other disciplines, including epidemiology, pharmacy, the health sciences, education, and the social, economic, and behavioral sciences. Beginning with a brief history and a review of essential elements of probability and statistics, a unique feature of the book is its focus on real and simulated datasets with all binary variables to reduce complex methods down to their fundamentals. Calculus is not required, but a willingness to tackle mathematical notation, difficult concepts, and intricate logical arguments is essential. While many real data examples are included, the book also features the Double What-If Study, based on simulated data with known causal mechanisms, in the belief that the methods are best understood in circumstances where they are known to either succeed or fail. Datasets, R code, and solutions to odd-numbered exercises are available at www.routledge.com.



Causal Inference In Statistics


Causal Inference In Statistics
DOWNLOAD

Author : Judea Pearl
language : en
Publisher: John Wiley & Sons
Release Date : 2016-03-07

Causal Inference In Statistics written by Judea Pearl and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-03-07 with Mathematics categories.


Many of the concepts and terminology surrounding modern causal inference can be quite intimidating to the novice. Judea Pearl presents a book ideal for beginners in statistics, providing a comprehensive introduction to the field of causality. Examples from classical statistics are presented throughout to demonstrate the need for causality in resolving decision-making dilemmas posed by data. Causal methods are also compared to traditional statistical methods, whilst questions are provided at the end of each section to aid student learning.



Causal Inference


Causal Inference
DOWNLOAD

Author : K. J. Rothman
language : en
Publisher: Kenneth Rothman
Release Date : 1988

Causal Inference written by K. J. Rothman and has been published by Kenneth Rothman this book supported file pdf, txt, epub, kindle and other format this book has been release on 1988 with Causation categories.




Causal Inference


Causal Inference
DOWNLOAD

Author : Paul R. Rosenbaum
language : en
Publisher: MIT Press
Release Date : 2023-04-04

Causal Inference written by Paul R. Rosenbaum and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-04-04 with Social Science categories.


A nontechnical guide to the basic ideas of modern causal inference, with illustrations from health, the economy, and public policy. Which of two antiviral drugs does the most to save people infected with Ebola virus? Does a daily glass of wine prolong or shorten life? Does winning the lottery make you more or less likely to go bankrupt? How do you identify genes that cause disease? Do unions raise wages? Do some antibiotics have lethal side effects? Does the Earned Income Tax Credit help people enter the workforce? Causal Inference provides a brief and nontechnical introduction to randomized experiments, propensity scores, natural experiments, instrumental variables, sensitivity analysis, and quasi-experimental devices. Ideas are illustrated with examples from medicine, epidemiology, economics and business, the social sciences, and public policy.



Artificial Intelligence And Causal Inference


Artificial Intelligence And Causal Inference
DOWNLOAD

Author : Momiao Xiong
language : en
Publisher: CRC Press
Release Date : 2022-02-03

Artificial Intelligence And Causal Inference written by Momiao Xiong and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-02-03 with Business & Economics categories.


Artificial Intelligence and Causal Inference address the recent development of relationships between artificial intelligence (AI) and causal inference. Despite significant progress in AI, a great challenge in AI development we are still facing is to understand mechanism underlying intelligence, including reasoning, planning and imagination. Understanding, transfer and generalization are major principles that give rise intelligence. One of a key component for understanding is causal inference. Causal inference includes intervention, domain shift learning, temporal structure and counterfactual thinking as major concepts to understand causation and reasoning. Unfortunately, these essential components of the causality are often overlooked by machine learning, which leads to some failure of the deep learning. AI and causal inference involve (1) using AI techniques as major tools for causal analysis and (2) applying the causal concepts and causal analysis methods to solving AI problems. The purpose of this book is to fill the gap between the AI and modern causal analysis for further facilitating the AI revolution. This book is ideal for graduate students and researchers in AI, data science, causal inference, statistics, genomics, bioinformatics and precision medicine. Key Features: Cover three types of neural networks, formulate deep learning as an optimal control problem and use Pontryagin’s Maximum Principle for network training. Deep learning for nonlinear mediation and instrumental variable causal analysis. Construction of causal networks is formulated as a continuous optimization problem. Transformer and attention are used to encode-decode graphics. RL is used to infer large causal networks. Use VAE, GAN, neural differential equations, recurrent neural network (RNN) and RL to estimate counterfactual outcomes. AI-based methods for estimation of individualized treatment effect in the presence of network interference.



An Introduction To Causal Inference


An Introduction To Causal Inference
DOWNLOAD

Author : Judea Pearl
language : en
Publisher: Createspace Independent Publishing Platform
Release Date : 2015

An Introduction To Causal Inference written by Judea Pearl and has been published by Createspace Independent Publishing Platform this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015 with Causation categories.


This paper summarizes recent advances in causal inference and underscores the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all causal inferences, the languages used in formulating those assumptions, the conditional nature of all causal and counterfactual claims, and the methods that have been developed for the assessment of such claims. These advances are illustrated using a general theory of causation based on the Structural Causal Model (SCM) described in Pearl (2000a), which subsumes and unifies other approaches to causation, and provides a coherent mathematical foundation for the analysis of causes and counterfactuals. In particular, the paper surveys the development of mathematical tools for inferring (from a combination of data and assumptions) answers to three types of causal queries: (1) queries about the effects of potential interventions, (also called "causal effects" or "policy evaluation") (2) queries about probabilities of counterfactuals, (including assessment of "regret," "attribution" or "causes of effects") and (3) queries about direct and indirect effects (also known as "mediation"). Finally, the paper defines the formal and conceptual relationships between the structural and potential-outcome frameworks and presents tools for a symbiotic analysis that uses the strong features of both. The tools are demonstrated in the analyses of mediation, causes of effects, and probabilities of causation. -- p. 1.



Explanation In Causal Inference


Explanation In Causal Inference
DOWNLOAD

Author : Tyler J. VanderWeele
language : en
Publisher: Oxford University Press, USA
Release Date : 2015

Explanation In Causal Inference written by Tyler J. VanderWeele and has been published by Oxford University Press, USA this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015 with Medical categories.


The book begins with a comprehensive introduction to mediation analysis, including chapters on concepts for mediation, regression-based methods, sensitivity analysis, time-to-event outcomes, methods for multiple mediators, methods for time-varying mediation and longitudinal data, and relations between mediation and other concepts involving intermediates such as surrogates, principal stratification, instrumental variables, and Mendelian randomization. The second part of the book concerns interaction or "moderation," including concepts for interaction, statistical interaction, confounding and interaction, mechanistic interaction, bias analysis for interaction, interaction in genetic studies, and power and sample-size calculation for interaction. The final part of the book provides comprehensive discussion about the relationships between mediation and interaction and unites these concepts within a single framework.