Causal Inference For Data Science

DOWNLOAD
Download Causal Inference For Data Science PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Causal Inference For Data Science book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Targeted Learning In Data Science
DOWNLOAD
Author : Mark J. van der Laan
language : en
Publisher: Springer
Release Date : 2018-03-28
Targeted Learning In Data Science written by Mark J. van der Laan and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-03-28 with Mathematics categories.
This textbook for graduate students in statistics, data science, and public health deals with the practical challenges that come with big, complex, and dynamic data. It presents a scientific roadmap to translate real-world data science applications into formal statistical estimation problems by using the general template of targeted maximum likelihood estimators. These targeted machine learning algorithms estimate quantities of interest while still providing valid inference. Targeted learning methods within data science area critical component for solving scientific problems in the modern age. The techniques can answer complex questions including optimal rules for assigning treatment based on longitudinal data with time-dependent confounding, as well as other estimands in dependent data structures, such as networks. Included in Targeted Learning in Data Science are demonstrations with soft ware packages and real data sets that present a case that targeted learning is crucial for the next generation of statisticians and data scientists. Th is book is a sequel to the first textbook on machine learning for causal inference, Targeted Learning, published in 2011. Mark van der Laan, PhD, is Jiann-Ping Hsu/Karl E. Peace Professor of Biostatistics and Statistics at UC Berkeley. His research interests include statistical methods in genomics, survival analysis, censored data, machine learning, semiparametric models, causal inference, and targeted learning. Dr. van der Laan received the 2004 Mortimer Spiegelman Award, the 2005 Van Dantzig Award, the 2005 COPSS Snedecor Award, the 2005 COPSS Presidential Award, and has graduated over 40 PhD students in biostatistics and statistics. Sherri Rose, PhD, is Associate Professor of Health Care Policy (Biostatistics) at Harvard Medical School. Her work is centered on developing and integrating innovative statistical approaches to advance human health. Dr. Rose’s methodological research focuses on nonparametric machine learning for causal inference and prediction. She co-leads the Health Policy Data Science Lab and currently serves as an associate editor for the Journal of the American Statistical Association and Biostatistics.
Causal Inference For Data Science
DOWNLOAD
Author : Alex Ruiz de Villa
language : en
Publisher: Simon and Schuster
Release Date : 2025-01-21
Causal Inference For Data Science written by Alex Ruiz de Villa and has been published by Simon and Schuster this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-01-21 with Computers categories.
Causal Inference for Data Science introduces data-centric techniques and methodologies you can use to estimate causal effects. The numerous insightful examples show you how to put causal inference into practice in the real world. The practical techniques presented in this unique book are accessible to anyone with intermediate data science skills and require no advanced statistics!
Causal Inference For Data Scientists
DOWNLOAD
Author : Adam Kelleher
language : en
Publisher: Addison-Wesley
Release Date : 2019-10-16
Causal Inference For Data Scientists written by Adam Kelleher and has been published by Addison-Wesley this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-10-16 with categories.
Cause And Effect Business Analytics And Data Science
DOWNLOAD
Author : Dominique Haughton
language : en
Publisher: CRC Press
Release Date : 2025-07-15
Cause And Effect Business Analytics And Data Science written by Dominique Haughton and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-07-15 with Business & Economics categories.
Among the most important questions that businesses ask are some very simple ones: If I decide to do something, will it work? And if so, how large are the effects? To answer these predictive questions, and later base decisions on them, we need to establish causal relationships. Establishing and measuring causality can be difficult. This book explains the most useful techniques for discerning causality and illustrates the principles with numerous examples from business. It discusses randomized experiments (aka A/B testing) and techniques such as propensity score matching, synthetic controls, double differences, and instrumental variables. There is a chapter on the powerful AI approach of Directed Acyclic Graphs (aka Bayesian Networks), another on structural equation models, and one on time-series techniques, including Granger causality. At the heart of the book are four chapters on uplift modeling, where the goal is to help firms determine how best to deploy their resources for marketing or other interventions. We start by modeling uplift, discuss the test-and-learn process, and provide an overview of the prescriptive analytics of uplift. The book is written in an accessible style and will be of interest to data analysts and strategists in business, to students and instructors of business and analytics who have a solid foundation in statistics, and to data scientists who recognize the need to take seriously the need for causality as an essential input into effective decision-making.
Causation In Population Health Informatics And Data Science
DOWNLOAD
Author : Olaf Dammann
language : en
Publisher: Springer
Release Date : 2018-10-29
Causation In Population Health Informatics And Data Science written by Olaf Dammann and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-10-29 with Medical categories.
Marketing text: This book covers the overlap between informatics, computer science, philosophy of causation, and causal inference in epidemiology and population health research. Key concepts covered include how data are generated and interpreted, and how and why concepts in health informatics and the philosophy of science should be integrated in a systems-thinking approach. Furthermore, a formal epistemology for the health sciences and public health is suggested. Causation in Population Health Informatics and Data Science provides a detailed guide of the latest thinking on causal inference in population health informatics. It is therefore a critical resource for all informaticians and epidemiologists interested in the potential benefits of utilising a systems-based approach to causal inference in health informatics.
Data Science For Undergraduates
DOWNLOAD
Author : National Academies of Sciences, Engineering, and Medicine
language : en
Publisher: National Academies Press
Release Date : 2018-10-11
Data Science For Undergraduates written by National Academies of Sciences, Engineering, and Medicine and has been published by National Academies Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-10-11 with Education categories.
Data science is emerging as a field that is revolutionizing science and industries alike. Work across nearly all domains is becoming more data driven, affecting both the jobs that are available and the skills that are required. As more data and ways of analyzing them become available, more aspects of the economy, society, and daily life will become dependent on data. It is imperative that educators, administrators, and students begin today to consider how to best prepare for and keep pace with this data-driven era of tomorrow. Undergraduate teaching, in particular, offers a critical link in offering more data science exposure to students and expanding the supply of data science talent. Data Science for Undergraduates: Opportunities and Options offers a vision for the emerging discipline of data science at the undergraduate level. This report outlines some considerations and approaches for academic institutions and others in the broader data science communities to help guide the ongoing transformation of this field.
Data Science For Public Policy
DOWNLOAD
Author : Jeffrey C. Chen
language : en
Publisher: Springer Nature
Release Date : 2021-09-01
Data Science For Public Policy written by Jeffrey C. Chen and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-09-01 with Mathematics categories.
This textbook presents the essential tools and core concepts of data science to public officials, policy analysts, and economists among others in order to further their application in the public sector. An expansion of the quantitative economics frameworks presented in policy and business schools, this book emphasizes the process of asking relevant questions to inform public policy. Its techniques and approaches emphasize data-driven practices, beginning with the basic programming paradigms that occupy the majority of an analyst’s time and advancing to the practical applications of statistical learning and machine learning. The text considers two divergent, competing perspectives to support its applications, incorporating techniques from both causal inference and prediction. Additionally, the book includes open-sourced data as well as live code, written in R and presented in notebook form, which readers can use and modify to practice working with data.
Managing Data Science
DOWNLOAD
Author : Kirill Dubovikov
language : en
Publisher: Packt Publishing Ltd
Release Date : 2019-11-12
Managing Data Science written by Kirill Dubovikov and has been published by Packt Publishing Ltd this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-12 with Computers categories.
Understand data science concepts and methodologies to manage and deliver top-notch solutions for your organization Key FeaturesLearn the basics of data science and explore its possibilities and limitationsManage data science projects and assemble teams effectively even in the most challenging situationsUnderstand management principles and approaches for data science projects to streamline the innovation processBook Description Data science and machine learning can transform any organization and unlock new opportunities. However, employing the right management strategies is crucial to guide the solution from prototype to production. Traditional approaches often fail as they don't entirely meet the conditions and requirements necessary for current data science projects. In this book, you'll explore the right approach to data science project management, along with useful tips and best practices to guide you along the way. After understanding the practical applications of data science and artificial intelligence, you'll see how to incorporate them into your solutions. Next, you will go through the data science project life cycle, explore the common pitfalls encountered at each step, and learn how to avoid them. Any data science project requires a skilled team, and this book will offer the right advice for hiring and growing a data science team for your organization. Later, you'll be shown how to efficiently manage and improve your data science projects through the use of DevOps and ModelOps. By the end of this book, you will be well versed with various data science solutions and have gained practical insights into tackling the different challenges that you'll encounter on a daily basis. What you will learnUnderstand the underlying problems of building a strong data science pipelineExplore the different tools for building and deploying data science solutionsHire, grow, and sustain a data science teamManage data science projects through all stages, from prototype to productionLearn how to use ModelOps to improve your data science pipelinesGet up to speed with the model testing techniques used in both development and production stagesWho this book is for This book is for data scientists, analysts, and program managers who want to use data science for business productivity by incorporating data science workflows efficiently. Some understanding of basic data science concepts will be useful to get the most out of this book.
Advanced Studies In Behaviormetrics And Data Science
DOWNLOAD
Author : Tadashi Imaizumi
language : en
Publisher: Springer Nature
Release Date : 2020-04-17
Advanced Studies In Behaviormetrics And Data Science written by Tadashi Imaizumi and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-04-17 with Social Science categories.
This book focuses on the latest developments in behaviormetrics and data science, covering a wide range of topics in data analysis and related areas of data science, including analysis of complex data, analysis of qualitative data, methods for high-dimensional data, dimensionality reduction, visualization of such data, multivariate statistical methods, analysis of asymmetric relational data, and various applications to real data. In addition to theoretical and methodological results, it also shows how to apply the proposed methods to a variety of problems, for example in consumer behavior, decision making, marketing data, and social network structures. Moreover, it discuses methodological aspects and applications in a wide range of areas, such as behaviormetrics; behavioral science; psychology; and marketing, management and social sciences. Combining methodological advances with real-world applications collected from a variety of research fields, the book is a valuable resource for researchers and practitioners, as well as for applied statisticians and data analysts.
Reasoning Web Causality Explanations And Declarative Knowledge
DOWNLOAD
Author : Leopoldo Bertossi
language : en
Publisher: Springer Nature
Release Date : 2023-04-27
Reasoning Web Causality Explanations And Declarative Knowledge written by Leopoldo Bertossi and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-04-27 with Computers categories.
The purpose of the Reasoning Web Summer School is to disseminate recent advances on reasoning techniques and related issues that are of particular interest to Semantic Web and Linked Data applications. It is primarily intended for postgraduate students, postdocs, young researchers, and senior researchers wishing to deepen their knowledge. As in the previous years, lectures in the summer school were given by a distinguished group of expert lecturers. The broad theme of this year's summer school was “Reasoning in Probabilistic Models and Machine Learning” and it covered various aspects of ontological reasoning and related issues that are of particular interest to Semantic Web and Linked Data applications. The following eight lectures were presented during the school: Logic-Based Explainability in Machine Learning; Causal Explanations and Fairness in Data; Statistical Relational Extensions of Answer Set Programming; Vadalog: Its Extensions and Business Applications; Cross-Modal Knowledge Discovery, Inference, and Challenges; Reasoning with Tractable Probabilistic Circuits; From Statistical Relational to Neural Symbolic Artificial Intelligence; Building Intelligent Data Apps in Rel using Reasoning and Probabilistic Modelling.