Challenges In Computational Statistics And Data Mining

DOWNLOAD
Download Challenges In Computational Statistics And Data Mining PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Challenges In Computational Statistics And Data Mining book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Challenges In Computational Statistics And Data Mining
DOWNLOAD
Author : Stan Matwin
language : en
Publisher: Springer
Release Date : 2015-07-07
Challenges In Computational Statistics And Data Mining written by Stan Matwin and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-07-07 with Technology & Engineering categories.
This volume contains nineteen research papers belonging to the areas of computational statistics, data mining, and their applications. Those papers, all written specifically for this volume, are their authors’ contributions to honour and celebrate Professor Jacek Koronacki on the occcasion of his 70th birthday. The book’s related and often interconnected topics, represent Jacek Koronacki’s research interests and their evolution. They also clearly indicate how close the areas of computational statistics and data mining are.
Computational Statistics In Data Science
DOWNLOAD
Author : Walter W. Piegorsch
language : de
Publisher: John Wiley & Sons
Release Date : 2022-03-23
Computational Statistics In Data Science written by Walter W. Piegorsch and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-03-23 with Mathematics categories.
Ein unverzichtbarer Leitfaden bei der Anwendung computergestützter Statistik in der modernen Datenwissenschaft In Computational Statistics in Data Science präsentiert ein Team aus bekannten Mathematikern und Statistikern eine fundierte Zusammenstellung von Konzepten, Theorien, Techniken und Praktiken der computergestützten Statistik für ein Publikum, das auf der Suche nach einem einzigen, umfassenden Referenzwerk für Statistik in der modernen Datenwissenschaft ist. Das Buch enthält etliche Kapitel zu den wesentlichen konkreten Bereichen der computergestützten Statistik, in denen modernste Techniken zeitgemäß und verständlich dargestellt werden. Darüber hinaus bietet Computational Statistics in Data Science einen kostenlosen Zugang zu den fertigen Einträgen im Online-Nachschlagewerk Wiley StatsRef: Statistics Reference Online. Außerdem erhalten die Leserinnen und Leser: * Eine gründliche Einführung in die computergestützte Statistik mit relevanten und verständlichen Informationen für Anwender und Forscher in verschiedenen datenintensiven Bereichen * Umfassende Erläuterungen zu aktuellen Themen in der Statistik, darunter Big Data, Datenstromverarbeitung, quantitative Visualisierung und Deep Learning Das Werk eignet sich perfekt für Forscher und Wissenschaftler sämtlicher Fachbereiche, die Techniken der computergestützten Statistik auf einem gehobenen oder fortgeschrittenen Niveau anwenden müssen. Zudem gehört Computational Statistics in Data Science in das Bücherregal von Wissenschaftlern, die sich mit der Erforschung und Entwicklung von Techniken der computergestützten Statistik und statistischen Grafiken beschäftigen.
Methodologies And Applications Of Computational Statistics For Machine Intelligence
DOWNLOAD
Author : Samanta, Debabrata
language : en
Publisher: IGI Global
Release Date : 2021-06-25
Methodologies And Applications Of Computational Statistics For Machine Intelligence written by Samanta, Debabrata and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-06-25 with Computers categories.
With the field of computational statistics growing rapidly, there is a need for capturing the advances and assessing their impact. Advances in simulation and graphical analysis also add to the pace of the statistical analytics field. Computational statistics play a key role in financial applications, particularly risk management and derivative pricing, biological applications including bioinformatics and computational biology, and computer network security applications that touch the lives of people. With high impacting areas such as these, it becomes important to dig deeper into the subject and explore the key areas and their progress in the recent past. Methodologies and Applications of Computational Statistics for Machine Intelligence serves as a guide to the applications of new advances in computational statistics. This text holds an accumulation of the thoughts of multiple experts together, keeping the focus on core computational statistics that apply to all domains. Covering topics including artificial intelligence, deep learning, and trend analysis, this book is an ideal resource for statisticians, computer scientists, mathematicians, lecturers, tutors, researchers, academic and corporate libraries, practitioners, professionals, students, and academicians.
Computational And Statistical Methods For Analysing Big Data With Applications
DOWNLOAD
Author : Shen Liu
language : en
Publisher: Academic Press
Release Date : 2015-11-20
Computational And Statistical Methods For Analysing Big Data With Applications written by Shen Liu and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-11-20 with Mathematics categories.
Due to the scale and complexity of data sets currently being collected in areas such as health, transportation, environmental science, engineering, information technology, business and finance, modern quantitative analysts are seeking improved and appropriate computational and statistical methods to explore, model and draw inferences from big data. This book aims to introduce suitable approaches for such endeavours, providing applications and case studies for the purpose of demonstration. Computational and Statistical Methods for Analysing Big Data with Applications starts with an overview of the era of big data. It then goes onto explain the computational and statistical methods which have been commonly applied in the big data revolution. For each of these methods, an example is provided as a guide to its application. Five case studies are presented next, focusing on computer vision with massive training data, spatial data analysis, advanced experimental design methods for big data, big data in clinical medicine, and analysing data collected from mobile devices, respectively. The book concludes with some final thoughts and suggested areas for future research in big data. - Advanced computational and statistical methodologies for analysing big data are developed - Experimental design methodologies are described and implemented to make the analysis of big data more computationally tractable - Case studies are discussed to demonstrate the implementation of the developed methods - Five high-impact areas of application are studied: computer vision, geosciences, commerce, healthcare and transportation - Computing code/programs are provided where appropriate
Data Mining With Computational Intelligence
DOWNLOAD
Author : Lipo Wang
language : en
Publisher: Springer Science & Business Media
Release Date : 2005-12-08
Data Mining With Computational Intelligence written by Lipo Wang and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-12-08 with Computers categories.
Finding information hidden in data is as theoretically difficult as it is practically important. With the objective of discovering unknown patterns from data, the methodologies of data mining were derived from statistics, machine learning, and artificial intelligence, and are being used successfully in application areas such as bioinformatics, banking, retail, and many others. Wang and Fu present in detail the state of the art on how to utilize fuzzy neural networks, multilayer perceptron neural networks, radial basis function neural networks, genetic algorithms, and support vector machines in such applications. They focus on three main data mining tasks: data dimensionality reduction, classification, and rule extraction. The book is targeted at researchers in both academia and industry, while graduate students and developers of data mining systems will also profit from the detailed algorithmic descriptions.
Mathematical Problems In Data Science
DOWNLOAD
Author : Li M. Chen
language : en
Publisher: Springer
Release Date : 2015-12-15
Mathematical Problems In Data Science written by Li M. Chen and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-12-15 with Computers categories.
This book describes current problems in data science and Big Data. Key topics are data classification, Graph Cut, the Laplacian Matrix, Google Page Rank, efficient algorithms, hardness of problems, different types of big data, geometric data structures, topological data processing, and various learning methods. For unsolved problems such as incomplete data relation and reconstruction, the book includes possible solutions and both statistical and computational methods for data analysis. Initial chapters focus on exploring the properties of incomplete data sets and partial-connectedness among data points or data sets. Discussions also cover the completion problem of Netflix matrix; machine learning method on massive data sets; image segmentation and video search. This book introduces software tools for data science and Big Data such MapReduce, Hadoop, and Spark. This book contains three parts. The first part explores the fundamental tools of data science. It includes basic graph theoretical methods, statistical and AI methods for massive data sets. In second part, chapters focus on the procedural treatment of data science problems including machine learning methods, mathematical image and video processing, topological data analysis, and statistical methods. The final section provides case studies on special topics in variational learning, manifold learning, business and financial data rec overy, geometric search, and computing models. Mathematical Problems in Data Science is a valuable resource for researchers and professionals working in data science, information systems and networks. Advanced-level students studying computer science, electrical engineering and mathematics will also find the content helpful.
Methodologies And Applications Of Computational Statistics For Machine Intelligence
DOWNLOAD
Author : Debabrata Samanta
language : en
Publisher: Engineering Science Reference
Release Date : 2021
Methodologies And Applications Of Computational Statistics For Machine Intelligence written by Debabrata Samanta and has been published by Engineering Science Reference this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021 with Machine learning categories.
"This book delves into computational statistics that focus on devising an efficient methodology to obtain quantitative solutions for problems that are devised quantitatively and brings together computational capability and statistical advanced thought processes to solve some of the problems encountered in the field"--
Computational Intelligent Data Analysis For Sustainable Development
DOWNLOAD
Author : Ting Yu
language : en
Publisher: CRC Press
Release Date : 2013-04-04
Computational Intelligent Data Analysis For Sustainable Development written by Ting Yu and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-04-04 with Business & Economics categories.
Going beyond performing simple analyses, researchers involved in the highly dynamic field of computational intelligent data analysis design algorithms that solve increasingly complex data problems in changing environments, including economic, environmental, and social data. Computational Intelligent Data Analysis for Sustainable Development presents novel methodologies for automatically processing these types of data to support rational decision making for sustainable development. Through numerous case studies and applications, it illustrates important data analysis methods, including mathematical optimization, machine learning, signal processing, and temporal and spatial analysis, for quantifying and describing sustainable development problems. With a focus on integrated sustainability analysis, the book presents a large-scale quadratic programming algorithm to expand high-resolution input-output tables from the national scale to the multinational scale to measure the carbon footprint of the entire trade supply chain. It also quantifies the error or dispersion between different reclassification and aggregation schemas, revealing that aggregation errors have a high concentration over specific regions and sectors. The book summarizes the latest contributions of the data analysis community to climate change research. A profuse amount of climate data of various types is available, providing a rich and fertile playground for future data mining and machine learning research. The book also pays special attention to several critical challenges in the science of climate extremes that are not handled by the current generation of climate models. It discusses potential conceptual and methodological directions to build a close integration between physical understanding, or physics-based modeling, and data-driven insights. The book then covers the conservation of species and ecologically valuable land. A case study on the Pennsylvania Dirt and Gravel Roads Program demonstrates that multiple-objective linear programming is a more versatile and efficient approach than the widely used benefit targeting selection process. Moving on to renewable energy and the need for smart grids, the book explores how the ongoing transformation to a sustainable energy system of renewable sources leads to a paradigm shift from demand-driven generation to generation-driven demand. It shows how to maximize renewable energy as electricity by building a supergrid or mixing renewable sources with demand management and storage. It also presents intelligent data analysis for real-time detection of disruptive events from power system frequency data collected using an existing Internet-based frequency monitoring network as well as evaluates a set of computationally intelligent techniques for long-term wind resource assessment. In addition, the book gives an example of how temporal and spatial data analysis tools are used to gather knowledge about behavioral data and address important social problems such as criminal offenses. It also applies constraint logic programming to a planning problem: the environmental and social impact assessment of the regional energy plan of the Emilia-Romagna region of Italy. Sustainable development problems, such as global warming, resource shortages, global species loss, and pollution, push researchers to create powerful data analysis approaches that analysts can then use to gain insight into these issues to support rational decision making. This volume shows both the data analysis and sustainable development communities how to use intelligent data analysis tools to address practical problems and encourages researchers to develop better methods.
Handbook Of Computational Statistics
DOWNLOAD
Author : James E. Gentle
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-07-06
Handbook Of Computational Statistics written by James E. Gentle and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-07-06 with Computers categories.
The Handbook of Computational Statistics - Concepts and Methods (second edition) is a revision of the first edition published in 2004, and contains additional comments and updated information on the existing chapters, as well as three new chapters addressing recent work in the field of computational statistics. This new edition is divided into 4 parts in the same way as the first edition. It begins with "How Computational Statistics became the backbone of modern data science" (Ch.1): an overview of the field of Computational Statistics, how it emerged as a separate discipline, and how its own development mirrored that of hardware and software, including a discussion of current active research. The second part (Chs. 2 - 15) presents several topics in the supporting field of statistical computing. Emphasis is placed on the need for fast and accurate numerical algorithms, and some of the basic methodologies for transformation, database handling, high-dimensional data and graphics treatment are discussed. The third part (Chs. 16 - 33) focuses on statistical methodology. Special attention is given to smoothing, iterative procedures, simulation and visualization of multivariate data. Lastly, a set of selected applications (Chs. 34 - 38) like Bioinformatics, Medical Imaging, Finance, Econometrics and Network Intrusion Detection highlight the usefulness of computational statistics in real-world applications.
Handbook Of Computational Statistics
DOWNLOAD
Author : Yuichi Mori
language : en
Publisher: Springer Science & Business Media
Release Date : 2004-07-14
Handbook Of Computational Statistics written by Yuichi Mori and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-07-14 with Computers categories.
The Handbook of Computational Statistics: Concepts and Methodology is divided into four parts. It begins with an overview over the field of Computational Statistics. The second part presents several topics in the supporting field of statistical computing. Emphasis is placed on the need of fast and accurate numerical algorithms and it discusses some of the basic methodologies for transformation, data base handling and graphics treatment. The third part focuses on statistical methodology. Special attention is given to smoothing, iterative procedures, simulation and visualization of multivariate data. Finally a set of selected applications like Bioinformatics, Medical Imaging, Finance and Network Intrusion Detection highlight the usefulness of computational statistics.