[PDF] Classification Clustering And Data Mining Applications - eBooks Review

Classification Clustering And Data Mining Applications


Classification Clustering And Data Mining Applications
DOWNLOAD

Download Classification Clustering And Data Mining Applications PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Classification Clustering And Data Mining Applications book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Classification Clustering And Data Mining Applications


Classification Clustering And Data Mining Applications
DOWNLOAD
Author : David Banks
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-01-07

Classification Clustering And Data Mining Applications written by David Banks and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-01-07 with Language Arts & Disciplines categories.


Modern data analysis stands at the interface of statistics, computer science, and discrete mathematics. This volume describes new methods in this area, with special emphasis on classification and cluster analysis. Those methods are applied to problems in information retrieval, phylogeny, medical diagnosis, microarrays, and other active research areas.



Text Mining


Text Mining
DOWNLOAD
Author : Ashok N. Srivastava
language : en
Publisher: Chapman and Hall/CRC
Release Date : 2009-06-15

Text Mining written by Ashok N. Srivastava and has been published by Chapman and Hall/CRC this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-06-15 with Computers categories.


The Definitive Resource on Text Mining Theory and Applications from Foremost Researchers in the Field Giving a broad perspective of the field from numerous vantage points, Text Mining: Classification, Clustering, and Applications focuses on statistical methods for text mining and analysis. It examines methods to automatically cluster and classify text documents and applies these methods in a variety of areas, including adaptive information filtering, information distillation, and text search. The book begins with chapters on the classification of documents into predefined categories. It presents state-of-the-art algorithms and their use in practice. The next chapters describe novel methods for clustering documents into groups that are not predefined. These methods seek to automatically determine topical structures that may exist in a document corpus. The book concludes by discussing various text mining applications that have significant implications for future research and industrial use. There is no doubt that text mining will continue to play a critical role in the development of future information systems and advances in research will be instrumental to their success. This book captures the technical depth and immense practical potential of text mining, guiding readers to a sound appreciation of this burgeoning field.



Classification Clustering And Data Analysis


Classification Clustering And Data Analysis
DOWNLOAD
Author : Krzystof Jajuga
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06

Classification Clustering And Data Analysis written by Krzystof Jajuga and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Computers categories.


The present volume contains a selection of papers presented at the Eighth Conference of the International Federation of Classification Societies (IFCS) which was held in Cracow, Poland, July 16-19, 2002. All originally submitted papers were subject to a reviewing process by two independent referees, a procedure which resulted in the selection of the 53 articles presented in this volume. These articles relate to theoretical investigations as well as to practical applications and cover a wide range of topics in the broad domain of classifi cation, data analysis and related methods. If we try to classify the wealth of problems, methods and approaches into some representative (partially over lapping) groups, we find in particular the following areas: • Clustering • Cluster validation • Discrimination • Multivariate data analysis • Statistical methods • Symbolic data analysis • Consensus trees and phylogeny • Regression trees • Neural networks and genetic algorithms • Applications in economics, medicine, biology, and psychology. Given the international orientation of IFCS conferences and the leading role of IFCS in the scientific world of classification, clustering and data anal ysis, this volume collects a representative selection of current research and modern applications in this field and serves as an up-to-date information source for statisticians, data analysts, data mining specialists and computer scientists.



Data Mining And Machine Learning Applications


Data Mining And Machine Learning Applications
DOWNLOAD
Author : Rohit Raja
language : en
Publisher: John Wiley & Sons
Release Date : 2022-01-26

Data Mining And Machine Learning Applications written by Rohit Raja and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-01-26 with Computers categories.


DATA MINING AND MACHINE LEARNING APPLICATIONS The book elaborates in detail on the current needs of data mining and machine learning and promotes mutual understanding among research in different disciplines, thus facilitating research development and collaboration. Data, the latest currency of today’s world, is the new gold. In this new form of gold, the most beautiful jewels are data analytics and machine learning. Data mining and machine learning are considered interdisciplinary fields. Data mining is a subset of data analytics and machine learning involves the use of algorithms that automatically improve through experience based on data. Massive datasets can be classified and clustered to obtain accurate results. The most common technologies used include classification and clustering methods. Accuracy and error rates are calculated for regression and classification and clustering to find actual results through algorithms like support vector machines and neural networks with forward and backward propagation. Applications include fraud detection, image processing, medical diagnosis, weather prediction, e-commerce and so forth. The book features: A review of the state-of-the-art in data mining and machine learning, A review and description of the learning methods in human-computer interaction, Implementation strategies and future research directions used to meet the design and application requirements of several modern and real-time applications for a long time, The scope and implementation of a majority of data mining and machine learning strategies. A discussion of real-time problems. Audience Industry and academic researchers, scientists, and engineers in information technology, data science and machine and deep learning, as well as artificial intelligence more broadly.



Data Classification


Data Classification
DOWNLOAD
Author : Charu C. Aggarwal
language : en
Publisher: CRC Press
Release Date : 2014-07-25

Data Classification written by Charu C. Aggarwal and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-07-25 with Business & Economics categories.


Comprehensive Coverage of the Entire Area of Classification Research on the problem of classification tends to be fragmented across such areas as pattern recognition, database, data mining, and machine learning. Addressing the work of these different communities in a unified way, Data Classification: Algorithms and Applications explores the underlying algorithms of classification as well as applications of classification in a variety of problem domains, including text, multimedia, social network, and biological data. This comprehensive book focuses on three primary aspects of data classification: Methods: The book first describes common techniques used for classification, including probabilistic methods, decision trees, rule-based methods, instance-based methods, support vector machine methods, and neural networks. Domains: The book then examines specific methods used for data domains such as multimedia, text, time-series, network, discrete sequence, and uncertain data. It also covers large data sets and data streams due to the recent importance of the big data paradigm. Variations: The book concludes with insight on variations of the classification process. It discusses ensembles, rare-class learning, distance function learning, active learning, visual learning, transfer learning, and semi-supervised learning as well as evaluation aspects of classifiers.



Text Mining


Text Mining
DOWNLOAD
Author : Ashok N. Srivastava
language : en
Publisher: CRC Press
Release Date : 2009-06-15

Text Mining written by Ashok N. Srivastava and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-06-15 with Business & Economics categories.


The Definitive Resource on Text Mining Theory and Applications from Foremost Researchers in the FieldGiving a broad perspective of the field from numerous vantage points, Text Mining: Classification, Clustering, and Applications focuses on statistical methods for text mining and analysis. It examines methods to automatically cluster and classify te



Data Mining


Data Mining
DOWNLOAD
Author : Derya Birant
language : en
Publisher: BoD – Books on Demand
Release Date : 2021-01-20

Data Mining written by Derya Birant and has been published by BoD – Books on Demand this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-01-20 with Computers categories.


Data mining is a branch of computer science that is used to automatically extract meaningful, useful knowledge and previously unknown, hidden, interesting patterns from a large amount of data to support the decision-making process. This book presents recent theoretical and practical advances in the field of data mining. It discusses a number of data mining methods, including classification, clustering, and association rule mining. This book brings together many different successful data mining studies in various areas such as health, banking, education, software engineering, animal science, and the environment.



Data Mining Applications With R


Data Mining Applications With R
DOWNLOAD
Author : Yanchang Zhao
language : en
Publisher: Academic Press
Release Date : 2013-11-26

Data Mining Applications With R written by Yanchang Zhao and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-11-26 with Computers categories.


Data Mining Applications with R is a great resource for researchers and professionals to understand the wide use of R, a free software environment for statistical computing and graphics, in solving different problems in industry. R is widely used in leveraging data mining techniques across many different industries, including government, finance, insurance, medicine, scientific research and more. This book presents 15 different real-world case studies illustrating various techniques in rapidly growing areas. It is an ideal companion for data mining researchers in academia and industry looking for ways to turn this versatile software into a powerful analytic tool. R code, Data and color figures for the book are provided at the RDataMining.com website. - Helps data miners to learn to use R in their specific area of work and see how R can apply in different industries - Presents various case studies in real-world applications, which will help readers to apply the techniques in their work - Provides code examples and sample data for readers to easily learn the techniques by running the code by themselves