[PDF] Clustering Methods For Big Data Analytics - eBooks Review

Clustering Methods For Big Data Analytics


Clustering Methods For Big Data Analytics
DOWNLOAD

Download Clustering Methods For Big Data Analytics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Clustering Methods For Big Data Analytics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Clustering Methods For Big Data Analytics


Clustering Methods For Big Data Analytics
DOWNLOAD
Author : Olfa Nasraoui
language : en
Publisher: Springer
Release Date : 2018-10-27

Clustering Methods For Big Data Analytics written by Olfa Nasraoui and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-10-27 with Technology & Engineering categories.


This book highlights the state of the art and recent advances in Big Data clustering methods and their innovative applications in contemporary AI-driven systems. The book chapters discuss Deep Learning for Clustering, Blockchain data clustering, Cybersecurity applications such as insider threat detection, scalable distributed clustering methods for massive volumes of data; clustering Big Data Streams such as streams generated by the confluence of Internet of Things, digital and mobile health, human-robot interaction, and social networks; Spark-based Big Data clustering using Particle Swarm Optimization; and Tensor-based clustering for Web graphs, sensor streams, and social networks. The chapters in the book include a balanced coverage of big data clustering theory, methods, tools, frameworks, applications, representation, visualization, and clustering validation.



Big Data Technologies And Applications


Big Data Technologies And Applications
DOWNLOAD
Author : Borko Furht
language : en
Publisher: Springer
Release Date : 2016-09-16

Big Data Technologies And Applications written by Borko Furht and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-09-16 with Computers categories.


The objective of this book is to introduce the basic concepts of big data computing and then to describe the total solution of big data problems using HPCC, an open-source computing platform. The book comprises 15 chapters broken into three parts. The first part, Big Data Technologies, includes introductions to big data concepts and techniques; big data analytics; and visualization and learning techniques. The second part, LexisNexis Risk Solution to Big Data, focuses on specific technologies and techniques developed at LexisNexis to solve critical problems that use big data analytics. It covers the open source High Performance Computing Cluster (HPCC Systems®) platform and its architecture, as well as parallel data languages ECL and KEL, developed to effectively solve big data problems. The third part, Big Data Applications, describes various data intensive applications solved on HPCC Systems. It includes applications such as cyber security, social network analytics including fraud, Ebola spread modeling using big data analytics, unsupervised learning, and image classification. The book is intended for a wide variety of people including researchers, scientists, programmers, engineers, designers, developers, educators, and students. This book can also be beneficial for business managers, entrepreneurs, and investors.



Big Data


Big Data
DOWNLOAD
Author : Balamurugan Balusamy
language : en
Publisher: John Wiley & Sons
Release Date : 2021-03-15

Big Data written by Balamurugan Balusamy and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-03-15 with Mathematics categories.


Learn Big Data from the ground up with this complete and up-to-date resource from leaders in the field Big Data: Concepts, Technology, and Architecture delivers a comprehensive treatment of Big Data tools, terminology, and technology perfectly suited to a wide range of business professionals, academic researchers, and students. Beginning with a fulsome overview of what we mean when we say, “Big Data,” the book moves on to discuss every stage of the lifecycle of Big Data. You’ll learn about the creation of structured, unstructured, and semi-structured data, data storage solutions, traditional database solutions like SQL, data processing, data analytics, machine learning, and data mining. You’ll also discover how specific technologies like Apache Hadoop, SQOOP, and Flume work. Big Data also covers the central topic of big data visualization with Tableau, and you’ll learn how to create scatter plots, histograms, bar, line, and pie charts with that software. Accessibly organized, Big Data includes illuminating case studies throughout the material, showing you how the included concepts have been applied in real-world settings. Some of those concepts include: The common challenges facing big data technology and technologists, like data heterogeneity and incompleteness, data volume and velocity, storage limitations, and privacy concerns Relational and non-relational databases, like RDBMS, NoSQL, and NewSQL databases Virtualizing Big Data through encapsulation, partitioning, and isolating, as well as big data server virtualization Apache software, including Hadoop, Cassandra, Avro, Pig, Mahout, Oozie, and Hive The Big Data analytics lifecycle, including business case evaluation, data preparation, extraction, transformation, analysis, and visualization Perfect for data scientists, data engineers, and database managers, Big Data also belongs on the bookshelves of business intelligence analysts who are required to make decisions based on large volumes of information. Executives and managers who lead teams responsible for keeping or understanding large datasets will also benefit from this book.



Data Mining And Big Data


Data Mining And Big Data
DOWNLOAD
Author : Ying Tan
language : en
Publisher: Springer
Release Date : 2019-07-25

Data Mining And Big Data written by Ying Tan and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-25 with Computers categories.


This book constitutes the refereed proceedings of the 4th International Conference on Data Mining and Big Data, DMBD 2019, held in Chiang Mai, Thailand, in July 2019. The 26 full papers and 8 short papers presented in this volume were carefully reviewed and selected from 79 submissions. They are organized in topical sections named: data analysis; prediction; clustering; classification; mining pattern; mining tasks.



Modern Algorithms Of Cluster Analysis


Modern Algorithms Of Cluster Analysis
DOWNLOAD
Author : Slawomir Wierzchoń
language : en
Publisher: Springer
Release Date : 2019-06-04

Modern Algorithms Of Cluster Analysis written by Slawomir Wierzchoń and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-04 with Computers categories.


This book provides the reader with a basic understanding of the formal concepts of the cluster, clustering, partition, cluster analysis etc. The book explains feature-based, graph-based and spectral clustering methods and discusses their formal similarities and differences. Understanding the related formal concepts is particularly vital in the epoch of Big Data; due to the volume and characteristics of the data, it is no longer feasible to predominantly rely on merely viewing the data when facing a clustering problem. Usually clustering involves choosing similar objects and grouping them together. To facilitate the choice of similarity measures for complex and big data, various measures of object similarity, based on quantitative (like numerical measurement results) and qualitative features (like text), as well as combinations of the two, are described, as well as graph-based similarity measures for (hyper) linked objects and measures for multilayered graphs. Numerous variants demonstrating how such similarity measures can be exploited when defining clustering cost functions are also presented. In addition, the book provides an overview of approaches to handling large collections of objects in a reasonable time. In particular, it addresses grid-based methods, sampling methods, parallelization via Map-Reduce, usage of tree-structures, random projections and various heuristic approaches, especially those used for community detection.



Computational Science And Its Applications Iccsa 2014


Computational Science And Its Applications Iccsa 2014
DOWNLOAD
Author : Beniamino Murgante
language : en
Publisher: Springer
Release Date : 2014-07-02

Computational Science And Its Applications Iccsa 2014 written by Beniamino Murgante and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-07-02 with Computers categories.


The six-volume set LNCS 8579-8584 constitutes the refereed proceedings of the 14th International Conference on Computational Science and Its Applications, ICCSA 2014, held in Guimarães, Portugal, in June/July 2014. The 347 revised papers presented in 30 workshops and a special track were carefully reviewed and selected from 1167. The 289 papers presented in the workshops cover various areas in computational science ranging from computational science technologies to specific areas of computational science such as computational geometry and security.



Handbook Of Research On Big Data Clustering And Machine Learning


Handbook Of Research On Big Data Clustering And Machine Learning
DOWNLOAD
Author : Garcia Marquez, Fausto Pedro
language : en
Publisher: IGI Global
Release Date : 2019-10-04

Handbook Of Research On Big Data Clustering And Machine Learning written by Garcia Marquez, Fausto Pedro and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-10-04 with Computers categories.


As organizations continue to develop, there is an increasing need for technological methods that can keep up with the rising amount of data and information that is being generated. Machine learning is a tool that has become powerful due to its ability to analyze large amounts of data quickly. Machine learning is one of many technological advancements that is being implemented into a multitude of specialized fields. An extensive study on the execution of these advancements within professional industries is necessary. The Handbook of Research on Big Data Clustering and Machine Learning is an essential reference source that synthesizes the analytic principles of clustering and machine learning to big data and provides an interface between the main disciplines of engineering/technology and the organizational, administrative, and planning abilities of management. Featuring research on topics such as project management, contextual data modeling, and business information systems, this book is ideally designed for engineers, economists, finance officers, marketers, decision makers, business professionals, industry practitioners, academicians, students, and researchers seeking coverage on the implementation of big data and machine learning within specific professional fields.



Big Data Analytics Systems Algorithms Applications


Big Data Analytics Systems Algorithms Applications
DOWNLOAD
Author : C.S.R. Prabhu
language : en
Publisher: Springer Nature
Release Date : 2019-10-14

Big Data Analytics Systems Algorithms Applications written by C.S.R. Prabhu and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-10-14 with Computers categories.


This book provides a comprehensive survey of techniques, technologies and applications of Big Data and its analysis. The Big Data phenomenon is increasingly impacting all sectors of business and industry, producing an emerging new information ecosystem. On the applications front, the book offers detailed descriptions of various application areas for Big Data Analytics in the important domains of Social Semantic Web Mining, Banking and Financial Services, Capital Markets, Insurance, Advertisement, Recommendation Systems, Bio-Informatics, the IoT and Fog Computing, before delving into issues of security and privacy. With regard to machine learning techniques, the book presents all the standard algorithms for learning – including supervised, semi-supervised and unsupervised techniques such as clustering and reinforcement learning techniques to perform collective Deep Learning. Multi-layered and nonlinear learning for Big Data are also covered. In turn, the book highlights real-life case studies on successful implementations of Big Data Analytics at large IT companies such as Google, Facebook, LinkedIn and Microsoft. Multi-sectorial case studies on domain-based companies such as Deutsche Bank, the power provider Opower, Delta Airlines and a Chinese City Transportation application represent a valuable addition. Given its comprehensive coverage of Big Data Analytics, the book offers a unique resource for undergraduate and graduate students, researchers, educators and IT professionals alike.



Intelligent And Fuzzy Techniques In Big Data Analytics And Decision Making


Intelligent And Fuzzy Techniques In Big Data Analytics And Decision Making
DOWNLOAD
Author : Cengiz Kahraman
language : en
Publisher: Springer
Release Date : 2019-07-05

Intelligent And Fuzzy Techniques In Big Data Analytics And Decision Making written by Cengiz Kahraman and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-07-05 with Computers categories.


This book includes the proceedings of the Intelligent and Fuzzy Techniques INFUS 2019 Conference, held in Istanbul, Turkey, on July 23–25, 2019. Big data analytics refers to the strategy of analyzing large volumes of data, or big data, gathered from a wide variety of sources, including social networks, videos, digital images, sensors, and sales transaction records. Big data analytics allows data scientists and various other users to evaluate large volumes of transaction data and other data sources that traditional business systems would be unable to tackle. Data-driven and knowledge-driven approaches and techniques have been widely used in intelligent decision-making, and they are increasingly attracting attention due to their importance and effectiveness in addressing uncertainty and incompleteness. INFUS 2019 focused on intelligent and fuzzy systems with applications in big data analytics and decision-making, providing an international forum that brought together those actively involved in areas of interest to data science and knowledge engineering. These proceeding feature about 150 peer-reviewed papers from countries such as China, Iran, Turkey, Malaysia, India, USA, Spain, France, Poland, Mexico, Bulgaria, Algeria, Pakistan, Australia, Lebanon, and Czech Republic.



Big Data Analytics Methods


Big Data Analytics Methods
DOWNLOAD
Author : Peter Ghavami
language : en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date : 2019-12-16

Big Data Analytics Methods written by Peter Ghavami and has been published by Walter de Gruyter GmbH & Co KG this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-16 with Business & Economics categories.


Big Data Analytics Methods unveils secrets to advanced analytics techniques ranging from machine learning, random forest classifiers, predictive modeling, cluster analysis, natural language processing (NLP), Kalman filtering and ensembles of models for optimal accuracy of analysis and prediction. More than 100 analytics techniques and methods provide big data professionals, business intelligence professionals and citizen data scientists insight on how to overcome challenges and avoid common pitfalls and traps in data analytics. The book offers solutions and tips on handling missing data, noisy and dirty data, error reduction and boosting signal to reduce noise. It discusses data visualization, prediction, optimization, artificial intelligence, regression analysis, the Cox hazard model and many analytics using case examples with applications in the healthcare, transportation, retail, telecommunication, consulting, manufacturing, energy and financial services industries. This book's state of the art treatment of advanced data analytics methods and important best practices will help readers succeed in data analytics.