[PDF] Collaborative Filtering Recommender Systems - eBooks Review

Collaborative Filtering Recommender Systems


Collaborative Filtering Recommender Systems
DOWNLOAD

Download Collaborative Filtering Recommender Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Collaborative Filtering Recommender Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Collaborative Filtering Recommender Systems


Collaborative Filtering Recommender Systems
DOWNLOAD
Author : Michael D. Ekstrand
language : en
Publisher: Now Publishers Inc
Release Date : 2011

Collaborative Filtering Recommender Systems written by Michael D. Ekstrand and has been published by Now Publishers Inc this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011 with Computers categories.


Collaborative Filtering Recommender Systems discusses a wide variety of the recommender choices available and their implications, providing both practitioners and researchers with an introduction to the important issues underlying recommenders and current best practices for addressing these issues.



Recommender Systems


Recommender Systems
DOWNLOAD
Author : Charu C. Aggarwal
language : en
Publisher: Springer
Release Date : 2016-03-28

Recommender Systems written by Charu C. Aggarwal and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-03-28 with Computers categories.


This book comprehensively covers the topic of recommender systems, which provide personalized recommendations of products or services to users based on their previous searches or purchases. Recommender system methods have been adapted to diverse applications including query log mining, social networking, news recommendations, and computational advertising. This book synthesizes both fundamental and advanced topics of a research area that has now reached maturity. The chapters of this book are organized into three categories: Algorithms and evaluation: These chapters discuss the fundamental algorithms in recommender systems, including collaborative filtering methods, content-based methods, knowledge-based methods, ensemble-based methods, and evaluation. Recommendations in specific domains and contexts: the context of a recommendation can be viewed as important side information that affects the recommendation goals. Different types of context such as temporal data, spatial data, social data, tagging data, and trustworthiness are explored. Advanced topics and applications: Various robustness aspects of recommender systems, such as shilling systems, attack models, and their defenses are discussed. In addition, recent topics, such as learning to rank, multi-armed bandits, group systems, multi-criteria systems, and active learning systems, are introduced together with applications. Although this book primarily serves as a textbook, it will also appeal to industrial practitioners and researchers due to its focus on applications and references. Numerous examples and exercises have been provided, and a solution manual is available for instructors.



Soft Computing For Problem Solving


Soft Computing For Problem Solving
DOWNLOAD
Author : Kedar Nath Das
language : en
Publisher: Springer Nature
Release Date : 2019-11-27

Soft Computing For Problem Solving written by Kedar Nath Das and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-11-27 with Technology & Engineering categories.


This two-volume book presents the outcomes of the 8th International Conference on Soft Computing for Problem Solving, SocProS 2018. This conference was a joint technical collaboration between the Soft Computing Research Society, Liverpool Hope University (UK), and Vellore Institute of Technology (India), and brought together researchers, engineers and practitioners to discuss thought-provoking developments and challenges in order to select potential future directions. The book highlights the latest advances and innovations in the interdisciplinary areas of soft computing, including original research papers on algorithms (artificial immune systems, artificial neural networks, genetic algorithms, genetic programming, and particle swarm optimization) and applications (control systems, data mining and clustering, finance, weather forecasting, game theory, business and forecasting applications). It offers a valuable resource for both young and experienced researchers dealing with complex and intricate real-world problems that are difficult to solve using traditional methods.



Recommender Systems Handbook


Recommender Systems Handbook
DOWNLOAD
Author : Francesco Ricci
language : en
Publisher: Springer
Release Date : 2015-11-17

Recommender Systems Handbook written by Francesco Ricci and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-11-17 with Computers categories.


This second edition of a well-received text, with 20 new chapters, presents a coherent and unified repository of recommender systems’ major concepts, theories, methodologies, trends, and challenges. A variety of real-world applications and detailed case studies are included. In addition to wholesale revision of the existing chapters, this edition includes new topics including: decision making and recommender systems, reciprocal recommender systems, recommender systems in social networks, mobile recommender systems, explanations for recommender systems, music recommender systems, cross-domain recommendations, privacy in recommender systems, and semantic-based recommender systems. This multi-disciplinary handbook involves world-wide experts from diverse fields such as artificial intelligence, human-computer interaction, information retrieval, data mining, mathematics, statistics, adaptive user interfaces, decision support systems, psychology, marketing, and consumer behavior. Theoreticians and practitioners from these fields will find this reference to be an invaluable source of ideas, methods and techniques for developing more efficient, cost-effective and accurate recommender systems.



Advanced Technologies Systems And Applications Vi


Advanced Technologies Systems And Applications Vi
DOWNLOAD
Author : Naida Ademović
language : en
Publisher: Springer
Release Date : 2021-11-17

Advanced Technologies Systems And Applications Vi written by Naida Ademović and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11-17 with Technology & Engineering categories.


This book presents the innovative and interdisciplinary application of advanced technologies. It includes the scientific outcomes and results of the conference 12th Day of Bosnian-Herzegovinian American Academy of Art and Sciences held in Mostar, Bosnia, and Herzegovina, June 24-27, 2021. The latest developments in various fields of engineering have been presented through various papers in civil engineering, mechanical engineering, computing, electrical and electronics engineering, and others. A new session, Sustainable Urban Development: Designing Smart, Inclusive and Resilient Cities, was organized, enabling experts in this field to exchange their knowledge and expertise.



Collaborative Filtering Using Data Mining And Analysis


Collaborative Filtering Using Data Mining And Analysis
DOWNLOAD
Author : Bhatnagar, Vishal
language : en
Publisher: IGI Global
Release Date : 2016-07-13

Collaborative Filtering Using Data Mining And Analysis written by Bhatnagar, Vishal and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-07-13 with Computers categories.


Internet usage has become a normal and essential aspect of everyday life. Due to the immense amount of information available on the web, it has become obligatory to find ways to sift through and categorize the overload of data while removing redundant material. Collaborative Filtering Using Data Mining and Analysis evaluates the latest patterns and trending topics in the utilization of data mining tools and filtering practices. Featuring emergent research and optimization techniques in the areas of opinion mining, text mining, and sentiment analysis, as well as their various applications, this book is an essential reference source for researchers and engineers interested in collaborative filtering.



Recommender Systems


Recommender Systems
DOWNLOAD
Author : P. Pavan Kumar
language : en
Publisher: CRC Press
Release Date : 2021-06-01

Recommender Systems written by P. Pavan Kumar and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-06-01 with Computers categories.


Recommender systems use information filtering to predict user preferences. They are becoming a vital part of e-business and are used in a wide variety of industries, ranging from entertainment and social networking to information technology, tourism, education, agriculture, healthcare, manufacturing, and retail. Recommender Systems: Algorithms and Applications dives into the theoretical underpinnings of these systems and looks at how this theory is applied and implemented in actual systems. The book examines several classes of recommendation algorithms, including Machine learning algorithms Community detection algorithms Filtering algorithms Various efficient and robust product recommender systems using machine learning algorithms are helpful in filtering and exploring unseen data by users for better prediction and extrapolation of decisions. These are providing a wider range of solutions to such challenges as imbalanced data set problems, cold-start problems, and long tail problems. This book also looks at fundamental ontological positions that form the foundations of recommender systems and explain why certain recommendations are predicted over others. Techniques and approaches for developing recommender systems are also investigated. These can help with implementing algorithms as systems and include A latent-factor technique for model-based filtering systems Collaborative filtering approaches Content-based approaches Finally, this book examines actual systems for social networking, recommending consumer products, and predicting risk in software engineering projects.



The Adaptive Web


The Adaptive Web
DOWNLOAD
Author : Peter Brusilovski
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-04-24

The Adaptive Web written by Peter Brusilovski and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-04-24 with Computers categories.


This state-of-the-art survey provides a systematic overview of the ideas and techniques of the adaptive Web and serves as a central source of information for researchers, practitioners, and students. The volume constitutes a comprehensive and carefully planned collection of chapters that map out the most important areas of the adaptive Web, each solicited from the experts and leaders in the field.



Personalization Techniques And Recommender Systems


Personalization Techniques And Recommender Systems
DOWNLOAD
Author : Matthew Y. Ma
language : en
Publisher: World Scientific
Release Date : 2008

Personalization Techniques And Recommender Systems written by Matthew Y. Ma and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008 with Computers categories.


The phenomenal growth of the Internet has resulted in huge amounts of online information, a situation that is overwhelming to the end users. To overcome this problem, personalization technologies have been extensively employed. The book is the first of its kind, representing research efforts in the diversity of personalization and recommendation techniques. These include user modeling, content, collaborative, hybrid and knowledge-based recommender systems. It presents theoretic research in the context of various applications from mobile information access, marketing and sales and web services, to library and personalized TV recommendation systems. This volume will serve as a basis to researchers who wish to learn more in the field of recommender systems, and also to those intending to deploy advanced personalization techniques in their systems. Sample Chapter(s). Personalization-Privacy Tradeoffs in Adaptive Information Access (865 KB). Contents: User Modeling and Profiling: Personalization-Privacy Tradeoffs in Adaptive Information Access (B Smyth); A Deep Evaluation of Two Cognitive User Models for Personalized Search (F Gasparetti & A Micarelli); Unobtrusive User Modeling for Adaptive Hypermedia (H J Holz et al.); User Modelling Sharing for Adaptive e-Learning and Intelligent Help (K Kabassi et al.); Collaborative Filtering: Experimental Analysis of Multiattribute Utility Collaborative Filtering on a Synthetic Data Set (N Manouselis & C Costopoulou); Efficient Collaborative Filtering in Content-Addressable Spaces (S Berkovsky et al.); Identifying and Analyzing User Model Information from Collaborative Filtering Datasets (J Griffith et al.); Content-Based Systems, Hybrid Systems and Machine Learning Methods: Personalization Strategies and Semantic Reasoning: Working in Tandem in Advanced Recommender Systems (Y Blanco-Fernindez et al.); Content Classification and Recommendation Techniques for Viewing Electronic Programming Guide on a Portable Device (J Zhu et al.); User Acceptance of Knowledge-Based Recommenders (A Felfernig et al.); Using Restricted Random Walks for Library Recommendations and Knowledge Space Exploration (M Franke & A Geyer-Schulz); An Experimental Study of Feature Selection Methods for Text Classification (G Uchyigit & K Clark). Readership: Researchers and graduate students in machine learning and databases/information science.