[PDF] Combinatorial Commutative Algebra - eBooks Review

Combinatorial Commutative Algebra


Combinatorial Commutative Algebra
DOWNLOAD

Download Combinatorial Commutative Algebra PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Combinatorial Commutative Algebra book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Combinatorial Commutative Algebra


Combinatorial Commutative Algebra
DOWNLOAD
Author : Ezra Miller
language : en
Publisher: Springer Science & Business Media
Release Date : 2005-06-21

Combinatorial Commutative Algebra written by Ezra Miller and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-06-21 with Mathematics categories.


Recent developments are covered Contains over 100 figures and 250 exercises Includes complete proofs



Combinatorics And Commutative Algebra


Combinatorics And Commutative Algebra
DOWNLOAD
Author : Richard P. Stanley
language : en
Publisher: Springer Science & Business Media
Release Date : 2007-12-13

Combinatorics And Commutative Algebra written by Richard P. Stanley and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2007-12-13 with Mathematics categories.


Some remarkable connections between commutative algebra and combinatorics have been discovered in recent years. This book provides an overview of two of the main topics in this area. The first concerns the solutions of linear equations in nonnegative integers. Applications are given to the enumeration of integer stochastic matrices (or magic squares), the volume of polytopes, combinatorial reciprocity theorems, and related results. The second topic deals with the face ring of a simplicial complex, and includes a proof of the Upper Bound Conjecture for Spheres. An introductory chapter giving background information in algebra, combinatorics and topology broadens access to this material for non-specialists. New to this edition is a chapter surveying more recent work related to face rings, focusing on applications to f-vectors.



Combinatorial Commutative Algebra


Combinatorial Commutative Algebra
DOWNLOAD
Author : Ezra Miller
language : en
Publisher: Springer Science & Business Media
Release Date : 2005-11-13

Combinatorial Commutative Algebra written by Ezra Miller and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-11-13 with Mathematics categories.


Combinatorial commutative algebra is an active area of research with thriving connections to other fields of pure and applied mathematics. This book provides a self-contained introduction to the subject, with an emphasis on combinatorial techniques for multigraded polynomial rings, semigroup algebras, and determinantal rings. The eighteen chapters cover a broad spectrum of topics, ranging from homological invariants of monomial ideals and their polyhedral resolutions, to hands-on tools for studying algebraic varieties with group actions, such as toric varieties, flag varieties, quiver loci, and Hilbert schemes. Over 100 figures, 250 exercises, and pointers to the literature make this book appealing to both graduate students and researchers.



Combinatorial Aspects Of Commutative Algebra And Algebraic Geometry


Combinatorial Aspects Of Commutative Algebra And Algebraic Geometry
DOWNLOAD
Author : Gunnar Fløystad
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-05-16

Combinatorial Aspects Of Commutative Algebra And Algebraic Geometry written by Gunnar Fløystad and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-05-16 with Mathematics categories.


The Abel Symposium 2009 "Combinatorial aspects of Commutative Algebra and Algebraic Geometry", held at Voss, Norway, featured talks by leading researchers in the field. This is the proceedings of the Symposium, presenting contributions on syzygies, tropical geometry, Boij-Söderberg theory, Schubert calculus, and quiver varieties. The volume also includes an introductory survey on binomial ideals with applications to hypergeometric series, combinatorial games and chemical reactions. The contributions pose interesting problems, and offer up-to-date research on some of the most active fields of commutative algebra and algebraic geometry with a combinatorial flavour.



Algebraic Combinatorics


Algebraic Combinatorics
DOWNLOAD
Author : Richard P. Stanley
language : en
Publisher: Springer Science & Business Media
Release Date : 2013-06-17

Algebraic Combinatorics written by Richard P. Stanley and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-06-17 with Mathematics categories.


Written by one of the foremost experts in the field, Algebraic Combinatorics is a unique undergraduate textbook that will prepare the next generation of pure and applied mathematicians. The combination of the author’s extensive knowledge of combinatorics and classical and practical tools from algebra will inspire motivated students to delve deeply into the fascinating interplay between algebra and combinatorics. Readers will be able to apply their newfound knowledge to mathematical, engineering, and business models. The text is primarily intended for use in a one-semester advanced undergraduate course in algebraic combinatorics, enumerative combinatorics, or graph theory. Prerequisites include a basic knowledge of linear algebra over a field, existence of finite fields, and group theory. The topics in each chapter build on one another and include extensive problem sets as well as hints to selected exercises. Key topics include walks on graphs, cubes and the Radon transform, the Matrix–Tree Theorem, and the Sperner property. There are also three appendices on purely enumerative aspects of combinatorics related to the chapter material: the RSK algorithm, plane partitions, and the enumeration of labeled trees. Richard Stanley is currently professor of Applied Mathematics at the Massachusetts Institute of Technology. Stanley has received several awards including the George Polya Prize in applied combinatorics, the Guggenheim Fellowship, and the Leroy P. Steele Prize for mathematical exposition. Also by the author: Combinatorics and Commutative Algebra, Second Edition, © Birkhauser.



Monomial Ideals


Monomial Ideals
DOWNLOAD
Author : Jürgen Herzog
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-09-28

Monomial Ideals written by Jürgen Herzog and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-09-28 with Mathematics categories.


This book demonstrates current trends in research on combinatorial and computational commutative algebra with a primary emphasis on topics related to monomial ideals. Providing a useful and quick introduction to areas of research spanning these fields, Monomial Ideals is split into three parts. Part I offers a quick introduction to the modern theory of Gröbner bases as well as the detailed study of generic initial ideals. Part II supplies Hilbert functions and resolutions and some of the combinatorics related to monomial ideals including the Kruskal—Katona theorem and algebraic aspects of Alexander duality. Part III discusses combinatorial applications of monomial ideals, providing a valuable overview of some of the central trends in algebraic combinatorics. Main subjects include edge ideals of finite graphs, powers of ideals, algebraic shifting theory and an introduction to discrete polymatroids. Theory is complemented by a number of examples and exercises throughout, bringing the reader to a deeper understanding of concepts explored within the text. Self-contained and concise, this book will appeal to a wide range of readers, including PhD students on advanced courses, experienced researchers, and combinatorialists and non-specialists with a basic knowledge of commutative algebra. Since their first meeting in 1985, Juergen Herzog (Universität Duisburg-Essen, Germany) and Takayuki Hibi (Osaka University, Japan), have worked together on a number of research projects, of which recent results are presented in this monograph.



Combinatorial Structures In Algebra And Geometry


Combinatorial Structures In Algebra And Geometry
DOWNLOAD
Author : Dumitru I. Stamate
language : en
Publisher: Springer Nature
Release Date : 2020-09-01

Combinatorial Structures In Algebra And Geometry written by Dumitru I. Stamate and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-09-01 with Mathematics categories.


This proceedings volume presents selected, peer-reviewed contributions from the 26th National School on Algebra, which was held in Constanța, Romania, on August 26-September 1, 2018. The works cover three fields of mathematics: algebra, geometry and discrete mathematics, discussing the latest developments in the theory of monomial ideals, algebras of graphs and local positivity of line bundles. Whereas interactions between algebra and geometry go back at least to Hilbert, the ties to combinatorics are much more recent and are subject of immense interest at the forefront of contemporary mathematics research. Transplanting methods between different branches of mathematics has proved very fruitful in the past – for example, the application of fixed point theorems in topology to solving nonlinear differential equations in analysis. Similarly, combinatorial structures, e.g., Newton-Okounkov bodies, have led to significant advances in our understanding of the asymptotic properties of line bundles in geometry and multiplier ideals in algebra. This book is intended for advanced graduate students, young scientists and established researchers with an interest in the overlaps between different fields of mathematics. A volume for the 24th edition of this conference was previously published with Springer under the title "Multigraded Algebra and Applications" (ISBN 978-3-319-90493-1).



Lectures In Algebraic Combinatorics


Lectures In Algebraic Combinatorics
DOWNLOAD
Author : Adriano M. Garsia
language : en
Publisher: Springer Nature
Release Date : 2020-10-06

Lectures In Algebraic Combinatorics written by Adriano M. Garsia and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-06 with Mathematics categories.


Capturing Adriano Garsia's unique perspective on essential topics in algebraic combinatorics, this book consists of selected, classic notes on a number of topics based on lectures held at the University of California, San Diego over the past few decades. The topics presented share a common theme of describing interesting interplays between algebraic topics such as representation theory and elegant structures which are sometimes thought of as being outside the purview of classical combinatorics. The lectures reflect Garsia’s inimitable narrative style and his exceptional expository ability. The preface presents the historical viewpoint as well as Garsia's personal insights into the subject matter. The lectures then start with a clear treatment of Alfred Young's construction of the irreducible representations of the symmetric group, seminormal representations and Morphy elements. This is followed by an elegant application of SL(2) representations to algebraic combinatorics. The last two lectures are on heaps, continued fractions and orthogonal polynomials with applications, and finally there is an exposition on the theory of finite fields. The book is aimed at graduate students and researchers in the field.



Ideals Of Powers And Powers Of Ideals


Ideals Of Powers And Powers Of Ideals
DOWNLOAD
Author : Enrico Carlini
language : en
Publisher: Springer Nature
Release Date : 2020-05-21

Ideals Of Powers And Powers Of Ideals written by Enrico Carlini and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-21 with Mathematics categories.


This book discusses regular powers and symbolic powers of ideals from three perspectives– algebra, combinatorics and geometry – and examines the interactions between them. It invites readers to explore the evolution of the set of associated primes of higher and higher powers of an ideal and explains the evolution of ideals associated with combinatorial objects like graphs or hypergraphs in terms of the original combinatorial objects. It also addresses similar questions concerning our understanding of the Castelnuovo-Mumford regularity of powers of combinatorially defined ideals in terms of the associated combinatorial data. From a more geometric point of view, the book considers how the relations between symbolic and regular powers can be interpreted in geometrical terms. Other topics covered include aspects of Waring type problems, symbolic powers of an ideal and their invariants (e.g., the Waldschmidt constant, the resurgence), and the persistence of associated primes.



Combinatorial Set Theory Of C Algebras


Combinatorial Set Theory Of C Algebras
DOWNLOAD
Author : Ilijas Farah
language : en
Publisher: Springer Nature
Release Date : 2019-12-24

Combinatorial Set Theory Of C Algebras written by Ilijas Farah and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-12-24 with Mathematics categories.


This book explores and highlights the fertile interaction between logic and operator algebras, which in recent years has led to the resolution of several long-standing open problems on C*-algebras. The interplay between logic and operator algebras (C*-algebras, in particular) is relatively young and the author is at the forefront of this interaction. The deep level of scholarship contained in these pages is evident and opens doors to operator algebraists interested in learning about the set-theoretic methods relevant to their field, as well as to set-theorists interested in expanding their view to the non-commutative realm of operator algebras. Enough background is included from both subjects to make the book a convenient, self-contained source for students. A fair number of the exercises form an integral part of the text. They are chosen to widen and deepen the material from the corresponding chapters. Some other exercises serve as a warmup for the latter chapters.