Combinatorial Convexity

DOWNLOAD
Download Combinatorial Convexity PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Combinatorial Convexity book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Combinatorial Convexity
DOWNLOAD
Author : Imre Bárány
language : en
Publisher: American Mathematical Soc.
Release Date : 2021-11-04
Combinatorial Convexity written by Imre Bárány and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11-04 with Education categories.
This book is about the combinatorial properties of convex sets, families of convex sets in finite dimensional Euclidean spaces, and finite points sets related to convexity. This area is classic, with theorems of Helly, Carathéodory, and Radon that go back more than a hundred years. At the same time, it is a modern and active field of research with recent results like Tverberg's theorem, the colourful versions of Helly and Carathéodory, and the (p,q) (p,q) theorem of Alon and Kleitman. As the title indicates, the topic is convexity and geometry, and is close to discrete mathematics. The questions considered are frequently of a combinatorial nature, and the proofs use ideas from geometry and are often combined with graph and hypergraph theory. The book is intended for students (graduate and undergraduate alike), but postdocs and research mathematicians will also find it useful. It can be used as a textbook with short chapters, each suitable for a one- or two-hour lecture. Not much background is needed: basic linear algebra and elements of (hyper)graph theory as well as some mathematical maturity should suffice.
Combinatorial Convexity And Algebraic Geometry
DOWNLOAD
Author : Günter Ewald
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Combinatorial Convexity And Algebraic Geometry written by Günter Ewald and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
The aim of this book is to provide an introduction for students and nonspecialists to a fascinating relation between combinatorial geometry and algebraic geometry, as it has developed during the last two decades. This relation is known as the theory of toric varieties or sometimes as torus embeddings. Chapters I-IV provide a self-contained introduction to the theory of convex poly topes and polyhedral sets and can be used independently of any applications to algebraic geometry. Chapter V forms a link between the first and second part of the book. Though its material belongs to combinatorial convexity, its definitions and theorems are motivated by toric varieties. Often they simply translate algebraic geometric facts into combinatorial language. Chapters VI-VIII introduce toric va rieties in an elementary way, but one which may not, for specialists, be the most elegant. In considering toric varieties, many of the general notions of algebraic geometry occur and they can be dealt with in a concrete way. Therefore, Part 2 of the book may also serve as an introduction to algebraic geometry and preparation for farther reaching texts about this field. The prerequisites for both parts of the book are standard facts in linear algebra (including some facts on rings and fields) and calculus. Assuming those, all proofs in Chapters I-VII are complete with one exception (IV, Theorem 5.1). In Chapter VIII we use a few additional prerequisites with references from appropriate texts.
Combinatorial Convexity And Algebraic Geometry
DOWNLOAD
Author : Guenter Ewald
language : en
Publisher: Springer Science & Business Media
Release Date : 1996-10-03
Combinatorial Convexity And Algebraic Geometry written by Guenter Ewald and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 1996-10-03 with Mathematics categories.
The book is an introduction to the theory of convex polytopes and polyhedral sets, to algebraic geometry, and to the connections between these fields, known as the theory of toric varieties. The first part of the book covers the theory of polytopes and provides large parts of the mathematical background of linear optimization and of the geometrical aspects in computer science. The second part introduces toric varieties in an elementary way.
Combinatorial Convexity
DOWNLOAD
Author : Imre Bárány
language : en
Publisher:
Release Date : 2021
Combinatorial Convexity written by Imre Bárány and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021 with Combinatorial analysis categories.
This book is about the combinatorial properties of convex sets, families of convex sets in finite dimensional Euclidean spaces, and finite points sets related to convexity. This area is classic, with theorems of Helly, Carathéodory, and Radon that go back more than a hundred years. At the same time, it is a modern and active field of research with recent results like Tverberg's theorem, the colourful versions of Helly and Carathéodory, and the (p, q) theorem of Alon and Kleitman. As the title indicates, the topic is convexity and geometry, and is close to discrete mathematics. The questions considered are frequently of a combinatorial nature, and the proofs use ideas from geometry and are often combined with graph and hypergraph theory.
Convexity And Related Combinatorial Geometry
DOWNLOAD
Author : David C. Kay
language : en
Publisher:
Release Date : 1982
Convexity And Related Combinatorial Geometry written by David C. Kay and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1982 with Mathematics categories.
Handbook Of Convex Geometry
DOWNLOAD
Author : Bozzano G Luisa
language : en
Publisher: Elsevier
Release Date : 2014-06-28
Handbook Of Convex Geometry written by Bozzano G Luisa and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-06-28 with Mathematics categories.
Handbook of Convex Geometry, Volume A offers a survey of convex geometry and its many ramifications and relations with other areas of mathematics, including convexity, geometric inequalities, and convex sets. The selection first offers information on the history of convexity, characterizations of convex sets, and mixed volumes. Topics include elementary convexity, equality in the Aleksandrov-Fenchel inequality, mixed surface area measures, characteristic properties of convex sets in analysis and differential geometry, and extensions of the notion of a convex set. The text then reviews the standard isoperimetric theorem and stability of geometric inequalities. The manuscript takes a look at selected affine isoperimetric inequalities, extremum problems for convex discs and polyhedra, and rigidity. Discussions focus on include infinitesimal and static rigidity related to surfaces, isoperimetric problem for convex polyhedral, bounds for the volume of a convex polyhedron, curvature image inequality, Busemann intersection inequality and its relatives, and Petty projection inequality. The book then tackles geometric algorithms, convexity and discrete optimization, mathematical programming and convex geometry, and the combinatorial aspects of convex polytopes. The selection is a valuable source of data for mathematicians and researchers interested in convex geometry.
Introduction To Graph Convexity
DOWNLOAD
Author : Júlio Araújo
language : en
Publisher: Springer Nature
Release Date : 2025-05-12
Introduction To Graph Convexity written by Júlio Araújo and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2025-05-12 with Mathematics categories.
This book focuses on the computational aspects of graph convexity, with a particular emphasis on path convexity within graphs. It provides a thoughtful introduction to this emerging research field, which originated by adapting concepts from convex geometry to combinatorics and has experienced substantial growth. The book starts with an introduction of fundamental convexity concepts and then proceeds to discuss convexity parameters. These parameters fall into two categories: one derived from abstract convexity studies and another motivated by computational complexity. Subsequent chapters explore geometric convexity within graphs, examining various graph classes such as interval graphs, proper interval graphs, cographs, chordal graphs, and strongly chordal graphs. The text concludes with a study of the computation of convexity parameters across different convexity types, including practical applications in areas like game theory. Compact and straightforward, this work serves as an ideal entry point for students and researchers interested in pursuing further research in the field of convexity. The English translation of this book, originally in Portuguese, was facilitated by artificial intelligence. The content was later revised by the authors for accuracy.
Lectures On Convex Geometry
DOWNLOAD
Author : Daniel Hug
language : en
Publisher: Springer Nature
Release Date : 2020-08-27
Lectures On Convex Geometry written by Daniel Hug and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-08-27 with Mathematics categories.
This book provides a self-contained introduction to convex geometry in Euclidean space. After covering the basic concepts and results, it develops Brunn–Minkowski theory, with an exposition of mixed volumes, the Brunn–Minkowski inequality, and some of its consequences, including the isoperimetric inequality. Further central topics are then treated, such as surface area measures, projection functions, zonoids, and geometric valuations. Finally, an introduction to integral-geometric formulas in Euclidean space is provided. The numerous exercises and the supplementary material at the end of each section form an essential part of the book. Convexity is an elementary and natural concept. It plays a key role in many mathematical fields, including functional analysis, optimization, probability theory, and stochastic geometry. Paving the way to the more advanced and specialized literature, the material will be accessible to students in the third year and can be covered in one semester.
Convex Bodies The Brunn Minkowski Theory
DOWNLOAD
Author : Rolf Schneider
language : en
Publisher: Cambridge University Press
Release Date : 2014
Convex Bodies The Brunn Minkowski Theory written by Rolf Schneider and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014 with Mathematics categories.
A complete presentation of a central part of convex geometry, from basics for beginners, to the exposition of current research.
Geometric Algorithms And Combinatorial Optimization
DOWNLOAD
Author : Martin Grötschel
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Geometric Algorithms And Combinatorial Optimization written by Martin Grötschel and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
Historically, there is a close connection between geometry and optImization. This is illustrated by methods like the gradient method and the simplex method, which are associated with clear geometric pictures. In combinatorial optimization, however, many of the strongest and most frequently used algorithms are based on the discrete structure of the problems: the greedy algorithm, shortest path and alternating path methods, branch-and-bound, etc. In the last several years geometric methods, in particular polyhedral combinatorics, have played a more and more profound role in combinatorial optimization as well. Our book discusses two recent geometric algorithms that have turned out to have particularly interesting consequences in combinatorial optimization, at least from a theoretical point of view. These algorithms are able to utilize the rich body of results in polyhedral combinatorics. The first of these algorithms is the ellipsoid method, developed for nonlinear programming by N. Z. Shor, D. B. Yudin, and A. S. NemirovskiI. It was a great surprise when L. G. Khachiyan showed that this method can be adapted to solve linear programs in polynomial time, thus solving an important open theoretical problem. While the ellipsoid method has not proved to be competitive with the simplex method in practice, it does have some features which make it particularly suited for the purposes of combinatorial optimization. The second algorithm we discuss finds its roots in the classical "geometry of numbers", developed by Minkowski. This method has had traditionally deep applications in number theory, in particular in diophantine approximation.