[PDF] Completely Positive Matrices - eBooks Review

Completely Positive Matrices


Completely Positive Matrices
DOWNLOAD

Download Completely Positive Matrices PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Completely Positive Matrices book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Completely Positive Matrices


Completely Positive Matrices
DOWNLOAD
Author : Abraham Berman
language : en
Publisher: World Scientific
Release Date : 2003-04-11

Completely Positive Matrices written by Abraham Berman and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003-04-11 with Mathematics categories.


A real matrix is positive semidefinite if it can be decomposed as A=BB′. In some applications the matrix B has to be elementwise nonnegative. If such a matrix exists, A is called completely positive. The smallest number of columns of a nonnegative matrix B such that A=BB′ is known as the cp-rank of A.This invaluable book focuses on necessary conditions and sufficient conditions for complete positivity, as well as bounds for the cp-rank. The methods are combinatorial, geometric and algebraic. The required background on nonnegative matrices, cones, graphs and Schur complements is outlined.



Completely Positive Matrices


Completely Positive Matrices
DOWNLOAD
Author : Abraham Berman
language : en
Publisher: World Scientific
Release Date : 2003

Completely Positive Matrices written by Abraham Berman and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2003 with Mathematics categories.


A real matrix is positive semidefinite if it can be decomposed as A = BBOC . In some applications the matrix B has to be elementwise nonnegative. If such a matrix exists, A is called completely positive. The smallest number of columns of a nonnegative matrix B such that A = BBOC is known as the cp- rank of A . This invaluable book focuses on necessary conditions and sufficient conditions for complete positivity, as well as bounds for the cp- rank. The methods are combinatorial, geometric and algebraic. The required background on nonnegative matrices, cones, graphs and Schur complements is outlined. Contents: Preliminaries: Matrix Theoretic Background; Positive Semidefinite Matrices; Nonnegative Matrices and M -Matrices; Schur Complements; Graphs; Convex Cones; The PSD Completion Problem; Complete Positivity: Definition and Basic Properties; Cones of Completely Positive Matrices; Small Matrices; Complete Positivity and the Comparison Matrix; Completely Positive Graphs; Completely Positive Matrices Whose Graphs are Not Completely Positive; Square Factorizations; Functions of Completely Positive Matrices; The CP Completion Problem; CP Rank: Definition and Basic Results; Completely Positive Matrices of a Given Rank; Completely Positive Matrices of a Given Order; When is the CP-Rank Equal to the Rank?. Readership: Upper level undergraduates, graduate students, academics and researchers interested in matrix theory."



Positive Definite Matrices


Positive Definite Matrices
DOWNLOAD
Author : Rajendra Bhatia
language : en
Publisher: Princeton University Press
Release Date : 2015-09-01

Positive Definite Matrices written by Rajendra Bhatia and has been published by Princeton University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-09-01 with Mathematics categories.


This book represents the first synthesis of the considerable body of new research into positive definite matrices. These matrices play the same role in noncommutative analysis as positive real numbers do in classical analysis. They have theoretical and computational uses across a broad spectrum of disciplines, including calculus, electrical engineering, statistics, physics, numerical analysis, quantum information theory, and geometry. Through detailed explanations and an authoritative and inspiring writing style, Rajendra Bhatia carefully develops general techniques that have wide applications in the study of such matrices. Bhatia introduces several key topics in functional analysis, operator theory, harmonic analysis, and differential geometry--all built around the central theme of positive definite matrices. He discusses positive and completely positive linear maps, and presents major theorems with simple and direct proofs. He examines matrix means and their applications, and shows how to use positive definite functions to derive operator inequalities that he and others proved in recent years. He guides the reader through the differential geometry of the manifold of positive definite matrices, and explains recent work on the geometric mean of several matrices. Positive Definite Matrices is an informative and useful reference book for mathematicians and other researchers and practitioners. The numerous exercises and notes at the end of each chapter also make it the ideal textbook for graduate-level courses.



Copositive And Completely Positive Matrices


Copositive And Completely Positive Matrices
DOWNLOAD
Author : Naomi Shaked-monderer
language : en
Publisher: World Scientific
Release Date : 2021-02-09

Copositive And Completely Positive Matrices written by Naomi Shaked-monderer and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-02-09 with Mathematics categories.


This book is an updated and extended version of Completely Positive Matrices (Abraham Berman and Naomi Shaked-Monderer, World Scientific 2003). It contains new sections on the cone of copositive matrices, which is the dual of the cone of completely positive matrices, and new results on both copositive matrices and completely positive matrices.The book is an up to date comprehensive resource for researchers in Matrix Theory and Optimization. It can also serve as a textbook for an advanced undergraduate or graduate course.



Positive Linear Maps Of Operator Algebras


Positive Linear Maps Of Operator Algebras
DOWNLOAD
Author : Erling Størmer
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-13

Positive Linear Maps Of Operator Algebras written by Erling Størmer and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-13 with Mathematics categories.


This volume, setting out the theory of positive maps as it stands today, reflects the rapid growth in this area of mathematics since it was recognized in the 1990s that these applications of C*-algebras are crucial to the study of entanglement in quantum theory. The author, a leading authority on the subject, sets out numerous results previously unpublished in book form. In addition to outlining the properties and structures of positive linear maps of operator algebras into the bounded operators on a Hilbert space, he guides readers through proofs of the Stinespring theorem and its applications to inequalities for positive maps. The text examines the maps’ positivity properties, as well as their associated linear functionals together with their density operators. It features special sections on extremal positive maps and Choi matrices. In sum, this is a vital publication that covers a full spectrum of matters relating to positive linear maps, of which a large proportion is relevant and applicable to today’s quantum information theory. The latter sections of the book present the material in finite dimensions, while the text as a whole appeals to a wider and more general readership by keeping the mathematics as elementary as possible throughout.



Totally Nonnegative Matrices


Totally Nonnegative Matrices
DOWNLOAD
Author : Shaun M. Fallat
language : en
Publisher: Princeton University Press
Release Date : 2011-04-11

Totally Nonnegative Matrices written by Shaun M. Fallat and has been published by Princeton University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-04-11 with Mathematics categories.


Totally nonnegative matrices arise in a remarkable variety of mathematical applications. This book is a comprehensive and self-contained study of the essential theory of totally nonnegative matrices, defined by the nonnegativity of all subdeterminants. It explores methodological background, historical highlights of key ideas, and specialized topics. The book uses classical and ad hoc tools, but a unifying theme is the elementary bidiagonal factorization, which has emerged as the single most important tool for this particular class of matrices. Recent work has shown that bidiagonal factorizations may be viewed in a succinct combinatorial way, leading to many deep insights. Despite slow development, bidiagonal factorizations, along with determinants, now provide the dominant methodology for understanding total nonnegativity. The remainder of the book treats important topics, such as recognition of totally nonnegative or totally positive matrices, variation diminution, spectral properties, determinantal inequalities, Hadamard products, and completion problems associated with totally nonnegative or totally positive matrices. The book also contains sample applications, an up-to-date bibliography, a glossary of all symbols used, an index, and related references.



Nonnegative Matrices And Applications


Nonnegative Matrices And Applications
DOWNLOAD
Author : R. B. Bapat
language : en
Publisher: Cambridge University Press
Release Date : 1997-03-28

Nonnegative Matrices And Applications written by R. B. Bapat and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1997-03-28 with Mathematics categories.


This book provides an integrated treatment of the theory of nonnegative matrices (matrices with only positive numbers or zero as entries) and some related classes of positive matrices, concentrating on connections with game theory, combinatorics, inequalities, optimisation and mathematical economics. The wide variety of applications, which include price fixing, scheduling and the fair division problem, have been carefully chosen both for their elegant mathematical content and for their accessibility to students with minimal preparation. Many results in matrix theory are also presented. The treatment is rigorous and almost all results are proved completely. These results and applications will be of great interest to researchers in linear programming, statistics and operations research. The minimal prerequisites also make the book accessible to first-year graduate students.



Introduction To Matrix Analysis And Applications


Introduction To Matrix Analysis And Applications
DOWNLOAD
Author : Fumio Hiai
language : en
Publisher: Springer Science & Business Media
Release Date : 2014-02-06

Introduction To Matrix Analysis And Applications written by Fumio Hiai and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-02-06 with Mathematics categories.


Matrices can be studied in different ways. They are a linear algebraic structure and have a topological/analytical aspect (for example, the normed space of matrices) and they also carry an order structure that is induced by positive semidefinite matrices. The interplay of these closely related structures is an essential feature of matrix analysis. This book explains these aspects of matrix analysis from a functional analysis point of view. After an introduction to matrices and functional analysis, it covers more advanced topics such as matrix monotone functions, matrix means, majorization and entropies. Several applications to quantum information are also included. Introduction to Matrix Analysis and Applications is appropriate for an advanced graduate course on matrix analysis, particularly aimed at studying quantum information. It can also be used as a reference for researchers in quantum information, statistics, engineering and economics.



Completely Bounded Maps And Operator Algebras


Completely Bounded Maps And Operator Algebras
DOWNLOAD
Author : Vern Paulsen
language : en
Publisher: Cambridge University Press
Release Date : 2002

Completely Bounded Maps And Operator Algebras written by Vern Paulsen and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2002 with Mathematics categories.


In this book, first published in 2003, the reader is provided with a tour of the principal results and ideas in the theories of completely positive maps, completely bounded maps, dilation theory, operator spaces and operator algebras, together with some of their main applications. The author assumes only that the reader has a basic background in functional analysis, and the presentation is self-contained and paced appropriately for graduate students new to the subject. Experts will also want this book for their library since the author illustrates the power of methods he has developed with new and simpler proofs of some of the major results in the area, many of which have not appeared earlier in the literature. An indispensable introduction to the theory of operator spaces for all who want to know more.



An Introduction To Semi Tensor Product Of Matrices And Its Applications


An Introduction To Semi Tensor Product Of Matrices And Its Applications
DOWNLOAD
Author : Dai-Zhan Cheng
language : en
Publisher: World Scientific
Release Date : 2012

An Introduction To Semi Tensor Product Of Matrices And Its Applications written by Dai-Zhan Cheng and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with Mathematics categories.


A generalization of Conventional Matrix Product (CMP), called the Semi-Tensor Product (STP), is proposed. It extends the CMP to two arbitrary matrices and maintains all fundamental properties of CMP. In addition, it has a pseudo-commutative property, which makes it more superior to CMP. The STP was proposed by the authors to deal with higher-dimensional data as well as multilinear mappings. After over a decade of development, STP has been proven to be a powerful tool in dealing with nonlinear and logical calculations.This book is a comprehensive introduction to the theory of STP and its various applications, including logical function, fuzzy control, Boolean networks, analysis and control of nonlinear systems, amongst others.