Complex Analysis And Special Topics In Harmonic Analysis

DOWNLOAD
Download Complex Analysis And Special Topics In Harmonic Analysis PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Complex Analysis And Special Topics In Harmonic Analysis book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Complex Analysis And Special Topics In Harmonic Analysis
DOWNLOAD
Author : Carlos A. Berenstein
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Complex Analysis And Special Topics In Harmonic Analysis written by Carlos A. Berenstein and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
A companion volume to the text "Complex Variables: An Introduction" by the same authors, this book further develops the theory, continuing to emphasize the role that the Cauchy-Riemann equation plays in modern complex analysis. Topics considered include: Boundary values of holomorphic functions in the sense of distributions; interpolation problems and ideal theory in algebras of entire functions with growth conditions; exponential polynomials; the G transform and the unifying role it plays in complex analysis and transcendental number theory; summation methods; and the theorem of L. Schwarz concerning the solutions of a homogeneous convolution equation on the real line and its applications in harmonic function theory.
Harmonic And Complex Analysis In Several Variables
DOWNLOAD
Author : Steven G. Krantz
language : en
Publisher: Springer
Release Date : 2017-09-20
Harmonic And Complex Analysis In Several Variables written by Steven G. Krantz and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-20 with Mathematics categories.
Authored by a ranking authority in harmonic analysis of several complex variables, this book embodies a state-of-the-art entrée at the intersection of two important fields of research: complex analysis and harmonic analysis. Written with the graduate student in mind, it is assumed that the reader has familiarity with the basics of complex analysis of one and several complex variables as well as with real and functional analysis. The monograph is largely self-contained and develops the harmonic analysis of several complex variables from the first principles. The text includes copious examples, explanations, an exhaustive bibliography for further reading, and figures that illustrate the geometric nature of the subject. Each chapter ends with an exercise set. Additionally, each chapter begins with a prologue, introducing the reader to the subject matter that follows; capsules presented in each section give perspective and a spirited launch to the segment; preludes help put ideas into context. Mathematicians and researchers in several applied disciplines will find the breadth and depth of the treatment of the subject highly useful.
Topics In Complex Analysis
DOWNLOAD
Author : Mats Andersson
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Topics In Complex Analysis written by Mats Andersson and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
This book is an outgrowth of lectures given on several occasions at Chalmers University of Technology and Goteborg University during the last ten years. As opposed to most introductory books on complex analysis, this one as sumes that the reader has previous knowledge of basic real analysis. This makes it possible to follow a rather quick route through the most fundamen tal material on the subject in order to move ahead to reach some classical highlights (such as Fatou theorems and some Nevanlinna theory), as well as some more recent topics (for example, the corona theorem and the HI_ BMO duality) within the time frame of a one-semester course. Sections 3 and 4 in Chapter 2, Sections 5 and 6 in Chapter 3, Section 3 in Chapter 5, and Section 4 in Chapter 7 were not contained in my original lecture notes and therefore might be considered special topics. In addition, they are completely independent and can be omitted with no loss of continuity. The order of the topics in the exposition coincides to a large degree with historical developments. The first five chapters essentially deal with theory developed in the nineteenth century, whereas the remaining chapters contain material from the early twentieth century up to the 1980s. Choosing methods of presentation and proofs is a delicate task. My aim has been to point out connections with real analysis and harmonic anal ysis, while at the same time treating classical complex function theory.
Explorations In Complex Functions
DOWNLOAD
Author : Richard Beals
language : en
Publisher: Springer Nature
Release Date : 2020-10-19
Explorations In Complex Functions written by Richard Beals and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-10-19 with Mathematics categories.
This textbook explores a selection of topics in complex analysis. From core material in the mainstream of complex analysis itself, to tools that are widely used in other areas of mathematics, this versatile compilation offers a selection of many different paths. Readers interested in complex analysis will appreciate the unique combination of topics and connections collected in this book. Beginning with a review of the main tools of complex analysis, harmonic analysis, and functional analysis, the authors go on to present multiple different, self-contained avenues to proceed. Chapters on linear fractional transformations, harmonic functions, and elliptic functions offer pathways to hyperbolic geometry, automorphic functions, and an intuitive introduction to the Schwarzian derivative. The gamma, beta, and zeta functions lead into L-functions, while a chapter on entire functions opens pathways to the Riemann hypothesis and Nevanlinna theory. Cauchy transforms give rise to Hilbert and Fourier transforms, with an emphasis on the connection to complex analysis. Valuable additional topics include Riemann surfaces, steepest descent, tauberian theorems, and the Wiener–Hopf method. Showcasing an array of accessible excursions, Explorations in Complex Functions is an ideal companion for graduate students and researchers in analysis and number theory. Instructors will appreciate the many options for constructing a second course in complex analysis that builds on a first course prerequisite; exercises complement the results throughout.
The Uncertainty Principle In Harmonic Analysis
DOWNLOAD
Author : Victor Havin
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
The Uncertainty Principle In Harmonic Analysis written by Victor Havin and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
The present book is a collection of variations on a theme which can be summed up as follows: It is impossible for a non-zero function and its Fourier transform to be simultaneously very small. In other words, the approximate equalities x :::::: y and x :::::: fj cannot hold, at the same time and with a high degree of accuracy, unless the functions x and yare identical. Any information gained about x (in the form of a good approximation y) has to be paid for by a corresponding loss of control on x, and vice versa. Such is, roughly speaking, the import of the Uncertainty Principle (or UP for short) referred to in the title ofthis book. That principle has an unmistakable kinship with its namesake in physics - Heisenberg's famous Uncertainty Principle - and may indeed be regarded as providing one of mathematical interpretations for the latter. But we mention these links with Quantum Mechanics and other connections with physics and engineering only for their inspirational value, and hasten to reassure the reader that at no point in this book will he be led beyond the world of purely mathematical facts. Actually, the portion of this world charted in our book is sufficiently vast, even though we confine ourselves to trigonometric Fourier series and integrals (so that "The U. P. in Fourier Analysis" might be a slightly more appropriate title than the one we chose).
Complex Analysis Harmonic Analysis And Applications
DOWNLOAD
Author : Robert Deville
language : en
Publisher: CRC Press
Release Date : 1996-04-30
Complex Analysis Harmonic Analysis And Applications written by Robert Deville and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1996-04-30 with Mathematics categories.
Multivariable complex analysis and harmonic analysis provide efficient techniques to study many applied mathematical problems. The main objective of a conference held in Bordeaux in June 1995, in honour of Professor Roger Gay, was to connect these mathematical fields with some of their applications. This was also the guideline for the fourteen contributions collected in this volume. Besides presenting new results, each speaker made a substantial effort in order to present an up to date survey of his field of research. All the subjects presented here are very active domains of research: integral geometry (with its relation to X-ray tomography), classical harmonic analysis and orthogonal polynomials, pluricomplex potential theory (with its deep connection with polynomial approximation), complex analytic methods in the theory of partial differentiable operators with constant coefficients (in the spirit of those initiated by Leon Ehrenpreis), Calderon-Zygmund operators and nonlinear operators, oscillatory integrals and resonance, and finally multivariable residue theory in its most recent developments. It is hoped that the reader will find enough insight in the different survey papers presented here to become involved with one of these subjects or to pursue further applications.
A Comprehensive Course In Analysis
DOWNLOAD
Author : Barry Simon
language : en
Publisher:
Release Date : 2015
A Comprehensive Course In Analysis written by Barry Simon and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015 with Mathematical analysis categories.
A Comprehensive Course in Analysis by Poincar Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis
Advances In Real And Complex Analysis With Applications
DOWNLOAD
Author : Michael Ruzhansky
language : en
Publisher: Birkhäuser
Release Date : 2017-10-03
Advances In Real And Complex Analysis With Applications written by Michael Ruzhansky and has been published by Birkhäuser this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-10-03 with Mathematics categories.
This book discusses a variety of topics in mathematics and engineering as well as their applications, clearly explaining the mathematical concepts in the simplest possible way and illustrating them with a number of solved examples. The topics include real and complex analysis, special functions and analytic number theory, q-series, Ramanujan’s mathematics, fractional calculus, Clifford and harmonic analysis, graph theory, complex analysis, complex dynamical systems, complex function spaces and operator theory, geometric analysis of complex manifolds, geometric function theory, Riemannian surfaces, Teichmüller spaces and Kleinian groups, engineering applications of complex analytic methods, nonlinear analysis, inequality theory, potential theory, partial differential equations, numerical analysis , fixed-point theory, variational inequality, equilibrium problems, optimization problems, stability of functional equations, and mathematical physics. It includes papers presented at the 24th International Conference on Finite or Infinite Dimensional Complex Analysis and Applications (24ICFIDCAA), held at the Anand International College of Engineering, Jaipur, 22–26 August 2016. The book is a valuable resource for researchers in real and complex analysis.
Topics In Complex Analysis And Operator Theory
DOWNLOAD
Author : Oscar Blasco
language : en
Publisher: American Mathematical Soc.
Release Date : 2012
Topics In Complex Analysis And Operator Theory written by Oscar Blasco and has been published by American Mathematical Soc. this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with Mathematics categories.
This book contains the lecture notes as well as some invited papers presented at the Third Winter School in Complex Analysis, Operator Theory and Applications held February 2-5, 2010, in Valencia, Spain. The book is divided into two parts. The first is an extended self-contained version of the mini-courses taught at the School. The papers in this first part are: Notes on real analytic functions and classical operators, by Pawel Domanski; Shining a Hilbertian lamp on the bidisk, by John E. McCarthy; Selected problems in perturbation theory, by Vladimir V. Peller; and Composition operators on Hardy-Orlicz spaces, by Luis Rodriguez-Piazza. The second part consists of several research papers on recent advances in the area and some survey articles of an expository character. The articles in this second part are: Remarks on weighted mixed norm spaces, by O. Blasco; Interpolation subspaces of $L^1$ of a vector measure and norm inequalities for the integration operator, by J.M. Calabuig, J. Rodriguez, and E.A. Sanchez-Perez; On the spectra of algebras of analytic functions, by D. Carando, D. Garcia, M. Maestre, and P. Sevilla-Peris; Holomorphic self-maps of the disk intertwining two linear fractional maps, by M.D. Contreras, S. Diaz-Madrigal, M.J. Martin, and D. Vukotic; ABC-type estimates via Garsia-type norms, by K.M. Dyakonov; and Volterra type operators on Bergman spaces with exponential weights, by J. Pau and J.A. Pelaez. The topics selected for the mini-courses cover several aspects of complex analysis and operator theory that play important roles in understanding connections between different areas that are considered in fashion these days. This part is aimed at graduate students and young researchers. The courses are self-contained, focusing on those aspects that are basic and that can lead the readers to a quick understanding of the theories presented in each topic. They start with the classical results and reach a selection of open problems in each case. The research and survey articles are aimed at young researchers in the area, as well as post-doc and senior researchers interested in complex analysis and operator theory. This book is published in cooperation with Real Sociedad Matematica Espanola.
Complex Analysis
DOWNLOAD
Author : Elias M. Stein
language : en
Publisher: Princeton University Press
Release Date : 2010-04-22
Complex Analysis written by Elias M. Stein and has been published by Princeton University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-04-22 with Mathematics categories.
With this second volume, we enter the intriguing world of complex analysis. From the first theorems on, the elegance and sweep of the results is evident. The starting point is the simple idea of extending a function initially given for real values of the argument to one that is defined when the argument is complex. From there, one proceeds to the main properties of holomorphic functions, whose proofs are generally short and quite illuminating: the Cauchy theorems, residues, analytic continuation, the argument principle. With this background, the reader is ready to learn a wealth of additional material connecting the subject with other areas of mathematics: the Fourier transform treated by contour integration, the zeta function and the prime number theorem, and an introduction to elliptic functions culminating in their application to combinatorics and number theory. Thoroughly developing a subject with many ramifications, while striking a careful balance between conceptual insights and the technical underpinnings of rigorous analysis, Complex Analysis will be welcomed by students of mathematics, physics, engineering and other sciences. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Complex Analysis is the second, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.