[PDF] Computational Analysis And Deep Learning For Medical Care - eBooks Review

Computational Analysis And Deep Learning For Medical Care


Computational Analysis And Deep Learning For Medical Care
DOWNLOAD

Download Computational Analysis And Deep Learning For Medical Care PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Computational Analysis And Deep Learning For Medical Care book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Computational Analysis And Deep Learning For Medical Care


Computational Analysis And Deep Learning For Medical Care
DOWNLOAD
Author : Amit Kumar Tyagi
language : en
Publisher: John Wiley & Sons
Release Date : 2021-08-24

Computational Analysis And Deep Learning For Medical Care written by Amit Kumar Tyagi and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-24 with Computers categories.


The book details deep learning models like ANN, RNN, LSTM, in many industrial sectors such as transportation, healthcare, military, agriculture, with valid and effective results, which will help researchers find solutions to their deep learning research problems. We have entered the era of smart world devices, where robots or machines are being used in most applications to solve real-world problems. These smart machines/devices reduce the burden on doctors, which in turn make their lives easier and the lives of their patients better, thereby increasing patient longevity, which is the ultimate goal of computer vision. Therefore, the goal in writing this book is to attempt to provide complete information on reliable deep learning models required for e-healthcare applications. Ways in which deep learning can enhance healthcare images or text data for making useful decisions are discussed. Also presented are reliable deep learning models, such as neural networks, convolutional neural networks, backpropagation, and recurrent neural networks, which are increasingly being used in medical image processing, including for colorization of black and white X-ray images, automatic machine translation images, object classification in photographs/images (CT scans), character or useful generation (ECG), image caption generation, etc. Hence, reliable deep learning methods for the perception or production of better results are a necessity for highly effective e-healthcare applications. Currently, the most difficult data-related problem that needs to be solved concerns the rapid increase of data occurring each day via billions of smart devices. To address the growing amount of data in healthcare applications, challenges such as not having standard tools, efficient algorithms, and a sufficient number of skilled data scientists need to be overcome. Hence, there is growing interest in investigating deep learning models and their use in e-healthcare applications. Audience Researchers in artificial intelligence, big data, computer science, and electronic engineering, as well as industry engineers in transportation, healthcare, biomedicine, military, agriculture.



Computational Analysis And Deep Learning For Medical Care


Computational Analysis And Deep Learning For Medical Care
DOWNLOAD
Author : Amit Kumar Tyagi
language : en
Publisher: John Wiley & Sons
Release Date : 2021-08-10

Computational Analysis And Deep Learning For Medical Care written by Amit Kumar Tyagi and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-08-10 with Computers categories.


The book details deep learning models like ANN, RNN, LSTM, in many industrial sectors such as transportation, healthcare, military, agriculture, with valid and effective results, which will help researchers find solutions to their deep learning research problems. We have entered the era of smart world devices, where robots or machines are being used in most applications to solve real-world problems. These smart machines/devices reduce the burden on doctors, which in turn make their lives easier and the lives of their patients better, thereby increasing patient longevity, which is the ultimate goal of computer vision. Therefore, the goal in writing this book is to attempt to provide complete information on reliable deep learning models required for e-healthcare applications. Ways in which deep learning can enhance healthcare images or text data for making useful decisions are discussed. Also presented are reliable deep learning models, such as neural networks, convolutional neural networks, backpropagation, and recurrent neural networks, which are increasingly being used in medical image processing, including for colorization of black and white X-ray images, automatic machine translation images, object classification in photographs/images (CT scans), character or useful generation (ECG), image caption generation, etc. Hence, reliable deep learning methods for the perception or production of better results are a necessity for highly effective e-healthcare applications. Currently, the most difficult data-related problem that needs to be solved concerns the rapid increase of data occurring each day via billions of smart devices. To address the growing amount of data in healthcare applications, challenges such as not having standard tools, efficient algorithms, and a sufficient number of skilled data scientists need to be overcome. Hence, there is growing interest in investigating deep learning models and their use in e-healthcare applications. Audience Researchers in artificial intelligence, big data, computer science, and electronic engineering, as well as industry engineers in transportation, healthcare, biomedicine, military, agriculture.



Deep Learning For Medical Image Analysis


Deep Learning For Medical Image Analysis
DOWNLOAD
Author : S. Kevin Zhou
language : en
Publisher: Academic Press
Release Date : 2017-01-18

Deep Learning For Medical Image Analysis written by S. Kevin Zhou and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-01-18 with Computers categories.


Deep learning is providing exciting solutions for medical image analysis problems and is seen as a key method for future applications. This book gives a clear understanding of the principles and methods of neural network and deep learning concepts, showing how the algorithms that integrate deep learning as a core component have been applied to medical image detection, segmentation and registration, and computer-aided analysis, using a wide variety of application areas. Deep Learning for Medical Image Analysis is a great learning resource for academic and industry researchers in medical imaging analysis, and for graduate students taking courses on machine learning and deep learning for computer vision and medical image computing and analysis. Covers common research problems in medical image analysis and their challenges Describes deep learning methods and the theories behind approaches for medical image analysis Teaches how algorithms are applied to a broad range of application areas, including Chest X-ray, breast CAD, lung and chest, microscopy and pathology, etc. Includes a Foreword written by Nicholas Ayache



Introduction To Deep Learning For Healthcare


Introduction To Deep Learning For Healthcare
DOWNLOAD
Author : Cao Xiao
language : en
Publisher: Springer Nature
Release Date : 2021-11-11

Introduction To Deep Learning For Healthcare written by Cao Xiao and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11-11 with Medical categories.


This textbook presents deep learning models and their healthcare applications. It focuses on rich health data and deep learning models that can effectively model health data. Healthcare data: Among all healthcare technologies, electronic health records (EHRs) had vast adoption and a significant impact on healthcare delivery in recent years. One crucial benefit of EHRs is to capture all the patient encounters with rich multi-modality data. Healthcare data include both structured and unstructured information. Structured data include various medical codes for diagnoses and procedures, lab results, and medication information. Unstructured data contain 1) clinical notes as text, 2) medical imaging data such as X-rays, echocardiogram, and magnetic resonance imaging (MRI), and 3) time-series data such as the electrocardiogram (ECG) and electroencephalogram (EEG). Beyond the data collected during clinical visits, patient self-generated/reported data start to grow thanks to wearable sensors’ increasing use. The authors present deep learning case studies on all data described. Deep learning models: Neural network models are a class of machine learning methods with a long history. Deep learning models are neural networks of many layers, which can extract multiple levels of features from raw data. Deep learning applied to healthcare is a natural and promising direction with many initial successes. The authors cover deep neural networks, convolutional neural networks, recurrent neural networks, embedding methods, autoencoders, attention models, graph neural networks, memory networks, and generative models. It’s presented with concrete healthcare case studies such as clinical predictive modeling, readmission prediction, phenotyping, x-ray classification, ECG diagnosis, sleep monitoring, automatic diagnosis coding from clinical notes, automatic deidentification, medication recommendation, drug discovery (drug property prediction and molecule generation), and clinical trial matching. This textbook targets graduate-level students focused on deep learning methods and their healthcare applications. It can be used for the concepts of deep learning and its applications as well. Researchers working in this field will also find this book to be extremely useful and valuable for their research.



Computational Intelligence For Machine Learning And Healthcare Informatics


Computational Intelligence For Machine Learning And Healthcare Informatics
DOWNLOAD
Author : Rajshree Srivastava
language : en
Publisher: Walter de Gruyter GmbH & Co KG
Release Date : 2020-06-22

Computational Intelligence For Machine Learning And Healthcare Informatics written by Rajshree Srivastava and has been published by Walter de Gruyter GmbH & Co KG this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-22 with Computers categories.


This book presents a variety of techniques designed to enhance and empower multi-disciplinary and multi-institutional machine learning research in healthcare informatics. It is intended to provide a unique compendium of current and emerging machine learning paradigms for healthcare informatics, reflecting the diversity, complexity, and depth and breadth of this multi-disciplinary area.



Deep Learning For Coders With Fastai And Pytorch


Deep Learning For Coders With Fastai And Pytorch
DOWNLOAD
Author : Jeremy Howard
language : en
Publisher: O'Reilly Media
Release Date : 2020-06-29

Deep Learning For Coders With Fastai And Pytorch written by Jeremy Howard and has been published by O'Reilly Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-06-29 with Computers categories.


Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala



Handbook Of Deep Learning In Biomedical Engineering


Handbook Of Deep Learning In Biomedical Engineering
DOWNLOAD
Author : Valentina Emilia Balas
language : en
Publisher: Academic Press
Release Date : 2020-11-12

Handbook Of Deep Learning In Biomedical Engineering written by Valentina Emilia Balas and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-11-12 with Science categories.


Deep Learning (DL) is a method of machine learning, running over Artificial Neural Networks, that uses multiple layers to extract high-level features from large amounts of raw data. Deep Learning methods apply levels of learning to transform input data into more abstract and composite information. Handbook for Deep Learning in Biomedical Engineering: Techniques and Applications gives readers a complete overview of the essential concepts of Deep Learning and its applications in the field of Biomedical Engineering. Deep learning has been rapidly developed in recent years, in terms of both methodological constructs and practical applications. Deep Learning provides computational models of multiple processing layers to learn and represent data with higher levels of abstraction. It is able to implicitly capture intricate structures of large-scale data and is ideally suited to many of the hardware architectures that are currently available. The ever-expanding amount of data that can be gathered through biomedical and clinical information sensing devices necessitates the development of machine learning and AI techniques such as Deep Learning and Convolutional Neural Networks to process and evaluate the data. Some examples of biomedical and clinical sensing devices that use Deep Learning include: Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Ultrasound, Single Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET), Magnetic Particle Imaging, EE/MEG, Optical Microscopy and Tomography, Photoacoustic Tomography, Electron Tomography, and Atomic Force Microscopy. Handbook for Deep Learning in Biomedical Engineering: Techniques and Applications provides the most complete coverage of Deep Learning applications in biomedical engineering available, including detailed real-world applications in areas such as computational neuroscience, neuroimaging, data fusion, medical image processing, neurological disorder diagnosis for diseases such as Alzheimer's, ADHD, and ASD, tumor prediction, as well as translational multimodal imaging analysis. - Presents a comprehensive handbook of the biomedical engineering applications of DL, including computational neuroscience, neuroimaging, time series data such as MRI, functional MRI, CT, EEG, MEG, and data fusion of biomedical imaging data from disparate sources, such as X-Ray/CT - Helps readers understand key concepts in DL applications for biomedical engineering and health care, including manifold learning, classification, clustering, and regression in neuroimaging data analysis - Provides readers with key DL development techniques such as creation of algorithms and application of DL through artificial neural networks and convolutional neural networks - Includes coverage of key application areas of DL such as early diagnosis of specific diseases such as Alzheimer's, ADHD, and ASD, and tumor prediction through MRI and translational multimodality imaging and biomedical applications such as detection, diagnostic analysis, quantitative measurements, and image guidance of ultrasonography



Artificial Intelligence In Medicine


Artificial Intelligence In Medicine
DOWNLOAD
Author : David Riaño
language : en
Publisher: Springer
Release Date : 2019-06-19

Artificial Intelligence In Medicine written by David Riaño and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-19 with Computers categories.


This book constitutes the refereed proceedings of the 17th Conference on Artificial Intelligence in Medicine, AIME 2019, held in Poznan, Poland, in June 2019. The 22 revised full and 31 short papers presented were carefully reviewed and selected from 134 submissions. The papers are organized in the following topical sections: deep learning; simulation; knowledge representation; probabilistic models; behavior monitoring; clustering, natural language processing, and decision support; feature selection; image processing; general machine learning; and unsupervised learning.



The Internet Of Medical Things Iomt And Telemedicine Frameworks And Applications


The Internet Of Medical Things Iomt And Telemedicine Frameworks And Applications
DOWNLOAD
Author : Pandey, Rajiv
language : en
Publisher: IGI Global
Release Date : 2022-09-23

The Internet Of Medical Things Iomt And Telemedicine Frameworks And Applications written by Pandey, Rajiv and has been published by IGI Global this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-09-23 with Medical categories.


The internet of medical things provides significant advantages for the well-being of society by increasing the quality of life and reducing medical expenses. An important step towards a smart healthcare system is to utilize the potential of existing technologies in order to deliver the best services to users and improve their circumstances. With the help of internet of medical things technologies, self-care and early diagnosis are influential services in strengthening the healthcare ecosystem, especially those which utilize remote monitoring systems. The Internet of Medical Things (IoMT) and Telemedicine Frameworks and Applications focuses on the role of artificial intelligence, the internet of medical things, and telemedicine as well as the advantages and challenges that can occur from the integration of these technologies. The book also evolves methodologies to develop frameworks for the integration of the internet of medical things and telemedicine. Covering topics such as remote healthcare, medical imaging, and data science, this reference work is ideal for researchers, academicians, scholars, practitioners, instructors, and students.



Artificial Intelligence Machine Learning And User Interface Design


Artificial Intelligence Machine Learning And User Interface Design
DOWNLOAD
Author : Abhijit Banubakode
language : en
Publisher: Bentham Science Publishers
Release Date : 2024-05-10

Artificial Intelligence Machine Learning And User Interface Design written by Abhijit Banubakode and has been published by Bentham Science Publishers this book supported file pdf, txt, epub, kindle and other format this book has been release on 2024-05-10 with Computers categories.


Artificial Intelligence, Machine Learning and User Interface Design is a forward-thinking compilation of reviews that explores the intersection of Artificial Intelligence (AI), Machine Learning (ML) and User Interface (UI) design. The book showcases recent advancements, emerging trends and the transformative impact of these technologies on digital experiences and technologies. The editors have compiled 14 multidisciplinary topics contributed by over 40 experts, covering foundational concepts of AI and ML, and progressing through intricate discussions on recent algorithms and models. Case studies and practical applications illuminate theoretical concepts, providing readers with actionable insights. From neural network architectures to intuitive interface prototypes, the book covers the entire spectrum, ensuring a holistic understanding of the interplay between these domains. Use cases of AI and ML highlighted in the book include categorization and management of waste, taste perception of tea, bird species identification, content-based image retrieval, natural language processing, code clone detection, knowledge representation, tourism recommendation systems and solid waste management. Advances in Artificial Intelligence, Machine Learning and User Interface Design aims to inform a diverse readership, including computer science students, AI and ML software engineers, UI/UX designers, researchers, and tech enthusiasts.