Computational Business Analytics

DOWNLOAD
Download Computational Business Analytics PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Computational Business Analytics book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Computational Business Analytics
DOWNLOAD
Author : Subrata Das
language : en
Publisher: CRC Press
Release Date : 2013-12-14
Computational Business Analytics written by Subrata Das and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-12-14 with Business & Economics categories.
Learn How to Properly Use the Latest Analytics Approaches in Your Organization Computational Business Analytics presents tools and techniques for descriptive, predictive, and prescriptive analytics applicable across multiple domains. Through many examples and challenging case studies from a variety of fields, practitioners easily see the connections to their own problems and can then formulate their own solution strategies. The book first covers core descriptive and inferential statistics for analytics. The author then enhances numerical statistical techniques with symbolic artificial intelligence (AI) and machine learning (ML) techniques for richer predictive and prescriptive analytics. With a special emphasis on methods that handle time and textual data, the text: Enriches principal component and factor analyses with subspace methods, such as latent semantic analyses Combines regression analyses with probabilistic graphical modeling, such as Bayesian networks Extends autoregression and survival analysis techniques with the Kalman filter, hidden Markov models, and dynamic Bayesian networks Embeds decision trees within influence diagrams Augments nearest-neighbor and k-means clustering techniques with support vector machines and neural networks These approaches are not replacements of traditional statistics-based analytics; rather, in most cases, a generalized technique can be reduced to the underlying traditional base technique under very restrictive conditions. The book shows how these enriched techniques offer efficient solutions in areas, including customer segmentation, churn prediction, credit risk assessment, fraud detection, and advertising campaigns.
Computational Intelligence For Business Analytics
DOWNLOAD
Author : Witold Pedrycz
language : en
Publisher: Springer Nature
Release Date : 2021-10-26
Computational Intelligence For Business Analytics written by Witold Pedrycz and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-10-26 with Technology & Engineering categories.
Corporate success has been changed by the importance of new developments in Business Analytics (BA) and furthermore by the support of computational intelligence- based techniques. This book opens a new avenues in these subjects, identifies key developments and opportunities. The book will be of interest for students, researchers and professionals to identify innovative ways delivered by Business Analytics based on computational intelligence solutions. They help elicit information, handle knowledge and support decision-making for more informed and reliable decisions even under high uncertainty environments.Computational Intelligence for Business Analytics has collected the latest technological innovations in the field of BA to improve business models related to Group Decision-Making, Forecasting, Risk Management, Knowledge Discovery, Data Breach Detection, Social Well-Being, among other key topics related to this field.
Video Analytics For Business Intelligence
DOWNLOAD
Author : Caifeng Shan
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-04-07
Video Analytics For Business Intelligence written by Caifeng Shan and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-04-07 with Computers categories.
Closed Circuit TeleVision (CCTV) cameras have been increasingly deployed pervasively in public spaces including retail centres and shopping malls. Intelligent video analytics aims to automatically analyze content of massive amount of public space video data and has been one of the most active areas of computer vision research in the last two decades. Current focus of video analytics research has been largely on detecting alarm events and abnormal behaviours for public safety and security applications. However, increasingly CCTV installations have also been exploited for gathering and analyzing business intelligence information, in order to enhance marketing and operational efficiency. For example, in retail environments, surveillance cameras can be utilised to collect statistical information about shopping behaviour and preference for marketing (e.g., how many people entered a shop; how many females/males or which age groups of people showed interests to a particular product; how long did they stay in the shop; and what are the frequent paths), and to measure operational efficiency for improving customer experience. Video analytics has the enormous potential for non-security oriented commercial applications. This book presents the latest developments on video analytics for business intelligence applications. It provides both academic and commercial practitioners an understanding of the state-of-the-art and a resource for potential applications and successful practice.
Computational Intelligence In Communications And Business Analytics
DOWNLOAD
Author : Paramartha Dutta
language : en
Publisher: Springer Nature
Release Date : 2021-05-25
Computational Intelligence In Communications And Business Analytics written by Paramartha Dutta and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-05-25 with Computers categories.
This book constitutes the refereed proceedings of the Third International Conference on Computational Intelligence, Communications, and Business Analytics, CICBA 2021, held in Santiniketan, India, in January 2021. The 12 full papers and 8 short papers presented in this volume were carefully reviewed and selected from 84 submissions. The papers are organized in topical sections on computational forensic (privacy and security); computational intelligence; data science and advanced data analytics; and intelligent data mining and data warehousing.
A Business Analyst S Introduction To Business Analytics
DOWNLOAD
Author : Adam Fleischhacker
language : en
Publisher:
Release Date : 2020-07-20
A Business Analyst S Introduction To Business Analytics written by Adam Fleischhacker and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-07-20 with categories.
This up-to-date business analytics textbook (published in July 2020) will get you harnessing the power of the R programming language to: manipulate and model data, discover and communicate insight, to visually communicate that insight, and successfully advocate for change within an organization. Book Description A frequent teaching-award winning professor with an analytics-industry background shares his hands-on guide to learning business analytics. It is the first textbook addressing a complete and modern business analytics workflow that includes data manipulation, data visualization, modelling business problems with graphical models, translating graphical models into code, and presenting insights back to stakeholders. Book Highlights Content that is accessible to anyone, even most analytics beginners. If you have taken a stats course, you are good to go. Assumes no knowledge of the R programming language. Provides introduction to R, RStudio, and the Tidyverse. Provides a solid foundation and an implementable workflow for anyone wading into the Bayesian inference waters. Provides a complete workflow within the R-ecosystem; there is no need to learn several programming languages or work through clunky interfaces between software tools. First book introducing two powerful R-packages - `causact` for visual modelling of business problems and `greta` which is an R interface to `TensorFlow` used for Bayesian inference. Uses the intuitive coding practices of the `tidyverse` including using `dplyr` for data manipulation and `ggplot2` for data visualization. Datasets that are freely and easily accessible. Code for generating all results and almost every visualization used in the textbook. Do not learn statistical computation or fancy math in a vacuum, learn it through this guide within the context of solving business problems.
Business And Consumer Analytics New Ideas
DOWNLOAD
Author : Pablo Moscato
language : en
Publisher: Springer
Release Date : 2019-05-30
Business And Consumer Analytics New Ideas written by Pablo Moscato and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-05-30 with Computers categories.
This two-volume handbook presents a collection of novel methodologies with applications and illustrative examples in the areas of data-driven computational social sciences. Throughout this handbook, the focus is kept specifically on business and consumer-oriented applications with interesting sections ranging from clustering and network analysis, meta-analytics, memetic algorithms, machine learning, recommender systems methodologies, parallel pattern mining and data mining to specific applications in market segmentation, travel, fashion or entertainment analytics. A must-read for anyone in data-analytics, marketing, behavior modelling and computational social science, interested in the latest applications of new computer science methodologies. The chapters are contributed by leading experts in the associated fields.The chapters cover technical aspects at different levels, some of which are introductory and could be used for teaching. Some chapters aim at building a commonunderstanding of the methodologies and recent application areas including the introduction of new theoretical results in the complexity of core problems. Business and marketing professionals may use the book to familiarize themselves with some important foundations of data science. The work is a good starting point to establish an open dialogue of communication between professionals and researchers from different fields. Together, the two volumes present a number of different new directions in Business and Customer Analytics with an emphasis in personalization of services, the development of new mathematical models and new algorithms, heuristics and metaheuristics applied to the challenging problems in the field. Sections of the book have introductory material to more specific and advanced themes in some of the chapters, allowing the volumes to be used as an advanced textbook. Clustering, Proximity Graphs, Pattern Mining, Frequent Itemset Mining, Feature Engineering, Network and Community Detection, Network-based Recommending Systems and Visualization, are some of the topics in the first volume. Techniques on Memetic Algorithms and their applications to Business Analytics and Data Science are surveyed in the second volume; applications in Team Orienteering, Competitive Facility-location, and Visualization of Products and Consumers are also discussed. The second volume also includes an introduction to Meta-Analytics, and to the application areas of Fashion and Travel Analytics. Overall, the two-volume set helps to describe some fundamentals, acts as a bridge between different disciplines, and presents important results in a rapidly moving field combining powerful optimization techniques allied to new mathematical models critical for personalization of services. Academics and professionals working in the area of business anyalytics, data science, operations research and marketing will find this handbook valuable as a reference. Students studying these fields will find this handbook useful and helpful as a secondary textbook.
Data Mining And Business Analytics With R
DOWNLOAD
Author : Johannes Ledolter
language : en
Publisher: John Wiley & Sons
Release Date : 2013-05-28
Data Mining And Business Analytics With R written by Johannes Ledolter and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-05-28 with Mathematics categories.
Collecting, analyzing, and extracting valuable information from a large amount of data requires easily accessible, robust, computational and analytical tools. Data Mining and Business Analytics with R utilizes the open source software R for the analysis, exploration, and simplification of large high-dimensional data sets. As a result, readers are provided with the needed guidance to model and interpret complicated data and become adept at building powerful models for prediction and classification. Highlighting both underlying concepts and practical computational skills, Data Mining and Business Analytics with R begins with coverage of standard linear regression and the importance of parsimony in statistical modeling. The book includes important topics such as penalty-based variable selection (LASSO); logistic regression; regression and classification trees; clustering; principal components and partial least squares; and the analysis of text and network data. In addition, the book presents: A thorough discussion and extensive demonstration of the theory behind the most useful data mining tools Illustrations of how to use the outlined concepts in real-world situations Readily available additional data sets and related R code allowing readers to apply their own analyses to the discussed materials Numerous exercises to help readers with computing skills and deepen their understanding of the material Data Mining and Business Analytics with R is an excellent graduate-level textbook for courses on data mining and business analytics. The book is also a valuable reference for practitioners who collect and analyze data in the fields of finance, operations management, marketing, and the information sciences.
Computational Intelligence Communications And Business Analytics
DOWNLOAD
Author : Jyotsna Kumar Mandal
language : en
Publisher: Springer
Release Date : 2019-06-24
Computational Intelligence Communications And Business Analytics written by Jyotsna Kumar Mandal and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2019-06-24 with Computers categories.
The two volume set CCIS 1030 and 1031 constitutes the refereed proceedings of the Second International Conference on Computational Intelligence, Communications, and Business Analytics, CICBA 2018, held in Kalyani, India, in July 2018. The 76 revised full papers presented in the two volumes were carefully reviewed and selected from 240 submissions. The papers are organized in topical sections on computational intelligence; signal processing and communications; microelectronics, sensors, and intelligent networks; data science & advanced data analytics; intelligent data mining & data warehousing; and computational forensics (privacy and security).
Computational And Statistical Methods For Analysing Big Data With Applications
DOWNLOAD
Author : Shen Liu
language : en
Publisher: Academic Press
Release Date : 2015-11-20
Computational And Statistical Methods For Analysing Big Data With Applications written by Shen Liu and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-11-20 with Mathematics categories.
Due to the scale and complexity of data sets currently being collected in areas such as health, transportation, environmental science, engineering, information technology, business and finance, modern quantitative analysts are seeking improved and appropriate computational and statistical methods to explore, model and draw inferences from big data. This book aims to introduce suitable approaches for such endeavours, providing applications and case studies for the purpose of demonstration. Computational and Statistical Methods for Analysing Big Data with Applications starts with an overview of the era of big data. It then goes onto explain the computational and statistical methods which have been commonly applied in the big data revolution. For each of these methods, an example is provided as a guide to its application. Five case studies are presented next, focusing on computer vision with massive training data, spatial data analysis, advanced experimental design methods for big data, big data in clinical medicine, and analysing data collected from mobile devices, respectively. The book concludes with some final thoughts and suggested areas for future research in big data. - Advanced computational and statistical methodologies for analysing big data are developed - Experimental design methodologies are described and implemented to make the analysis of big data more computationally tractable - Case studies are discussed to demonstrate the implementation of the developed methods - Five high-impact areas of application are studied: computer vision, geosciences, commerce, healthcare and transportation - Computing code/programs are provided where appropriate
Computational Intelligent Data Analysis For Sustainable Development
DOWNLOAD
Author : Ting Yu
language : en
Publisher: CRC Press
Release Date : 2016-04-19
Computational Intelligent Data Analysis For Sustainable Development written by Ting Yu and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-04-19 with Business & Economics categories.
Going beyond performing simple analyses, researchers involved in the highly dynamic field of computational intelligent data analysis design algorithms that solve increasingly complex data problems in changing environments, including economic, environmental, and social data. Computational Intelligent Data Analysis for Sustainable Development presents novel methodologies for automatically processing these types of data to support rational decision making for sustainable development. Through numerous case studies and applications, it illustrates important data analysis methods, including mathematical optimization, machine learning, signal processing, and temporal and spatial analysis, for quantifying and describing sustainable development problems. With a focus on integrated sustainability analysis, the book presents a large-scale quadratic programming algorithm to expand high-resolution input-output tables from the national scale to the multinational scale to measure the carbon footprint of the entire trade supply chain. It also quantifies the error or dispersion between different reclassification and aggregation schemas, revealing that aggregation errors have a high concentration over specific regions and sectors. The book summarizes the latest contributions of the data analysis community to climate change research. A profuse amount of climate data of various types is available, providing a rich and fertile playground for future data mining and machine learning research. The book also pays special attention to several critical challenges in the science of climate extremes that are not handled by the current generation of climate models. It discusses potential conceptual and methodological directions to build a close integration between physical understanding, or physics-based modeling, and data-driven insights. The book then covers the conservation of species and ecologically valuable land. A case study on the Pennsylvania Dirt and Gravel Roads Program demonstrates that multiple-objective linear programming is a more versatile and efficient approach than the widely used benefit targeting selection process. Moving on to renewable energy and the need for smart grids, the book explores how the ongoing transformation to a sustainable energy system of renewable sources leads to a paradigm shift from demand-driven generation to generation-driven demand. It shows how to maximize renewable energy as electricity by building a supergrid or mixing renewable sources with demand management and storage. It also presents intelligent data analysis for real-time detection of disruptive events from power system frequency data collected using an existing Internet-based frequency monitoring network as well as evaluates a set of computationally intelligent techniques for long-term wind resource assessment. In addition, the book gives an example of how temporal and spatial data analysis tools are used to gather knowledge about behavioral data and address important social problems such as criminal offenses. It also applies constraint logic programming to a planning problem: the environmental and social impact assessment of the regional energy plan of the Emilia-Romagna region of Italy. Sustainable development problems, such as global warming, resource shortages, global species loss, and pollution, push researchers to create powerful data analysis approaches that analysts can then use to gain insight into these issues to support rational decision making. This volume shows both the data analysis and sustainable development communities how to use intelligent data analysis tools to address practical problems and encourages researchers to develop better methods.