[PDF] Computational Electromagnetism - eBooks Review

Computational Electromagnetism


Computational Electromagnetism
DOWNLOAD

Download Computational Electromagnetism PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Computational Electromagnetism book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Computational Electromagnetism


Computational Electromagnetism
DOWNLOAD
Author : Alain Bossavit
language : en
Publisher: Academic Press
Release Date : 1998-02-04

Computational Electromagnetism written by Alain Bossavit and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998-02-04 with Science categories.


Computational Electromagnetism refers to the modern concept of computer-aided analysis, and design, of virtually all electric devices such as motors, machines, transformers, etc., as well as of the equipment inthe currently booming field of telecommunications, such as antennas, radars, etc. The present book is uniquely written to enable the reader-- be it a student, a scientist, or a practitioner-- to successfully perform important simulation techniques and to design efficient computer software for electromagnetic device analysis. Numerous illustrations, solved exercises, original ideas, and an extensive and up-to-date bibliography make it a valuable reference for both experts and beginners in the field. A researcher and practitioner will find in it information rarely available in other sources, such as on symmetry, bilateral error bounds by complimentarity, edge and face elements, treatment of infinite domains, etc. At the same time, the book is a useful teaching tool for courses in computational techniques in certain fields of physics and electrical engineering. As a self-contained text, it presents an extensive coverage of the most important concepts from Maxwells equations to computer-solvable algebraic systems-- for both static, quasi-static, and harmonic high-frequency problems.BenefitsTo the EngineerA sound background necessary not only to understand the principles behind variational methods and finite elements, but also to design pertinent and well-structured software.To the Specialist in Numerical ModelingThe book offers new perspectives of practical importance on classical issues: the underlying symmetry of Maxwell equations, their interaction with other fields of physics in real-life modeling, the benefits of edge and face elements, approaches to error analysis, and "complementarity."To the TeacherAn expository strategy that will allow you to guide the student along a safe and easy route through otherwise difficult concepts: weak formulations and their relation to fundamental conservation principles of physics, functional spaces, Hilbert spaces, approximation principles, finite elements, and algorithms for solving linear systems. At a higher level, the book provides a concise and self-contained introduction to edge elements and their application to mathematical modeling of the basic electromagnetic phenomena, and static problems, such as eddy-current problems and microwaves in cavities.To the StudentSolved exercises, with "hint" and "full solution" sections, will both test and enhance the understanding of the material. Numerous illustrations will help in grasping difficult mathematical concepts.



Computational Electromagnetics


Computational Electromagnetics
DOWNLOAD
Author : Anders Bondeson
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-02-07

Computational Electromagnetics written by Anders Bondeson and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-02-07 with Mathematics categories.


Describes most popular computational methods used to solve problems in electromagnetics Matlab code is included throughout, so that the reader can implement the various techniques discussed Exercises included



Computational Electromagnetism


Computational Electromagnetism
DOWNLOAD
Author : Houssem Haddar
language : en
Publisher: Springer
Release Date : 2015-07-20

Computational Electromagnetism written by Houssem Haddar and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-07-20 with Mathematics categories.


Presenting topics that have not previously been contained in a single volume, this book offers an up-to-date review of computational methods in electromagnetism, with a focus on recent results in the numerical simulation of real-life electromagnetic problems and on theoretical results that are useful in devising and analyzing approximation algorithms. Based on four courses delivered in Cetraro in June 2014, the material covered includes the spatial discretization of Maxwell’s equations in a bounded domain, the numerical approximation of the eddy current model in harmonic regime, the time domain integral equation method (with an emphasis on the electric-field integral equation) and an overview of qualitative methods for inverse electromagnetic scattering problems. Assuming some knowledge of the variational formulation of PDEs and of finite element/boundary element methods, the book is suitable for PhD students and researchers interested in numerical approximation of partial differential equations and scientific computing.



Essentials Of Computational Electromagnetics


Essentials Of Computational Electromagnetics
DOWNLOAD
Author : Xin-Qing Sheng
language : en
Publisher: John Wiley & Sons
Release Date : 2012-03-22

Essentials Of Computational Electromagnetics written by Xin-Qing Sheng and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-03-22 with Science categories.


Essentials of Computational Electromagnetics provides an in-depth introduction of the three main full-wave numerical methods in computational electromagnetics (CEM); namely, the method of moment (MoM), the finite element method (FEM), and the finite-difference time-domain (FDTD) method. Numerous monographs can be found addressing one of the above three methods. However, few give a broad general overview of essentials embodied in these methods, or were published too early to include recent advances. Furthermore, many existing monographs only present the final numerical results without specifying practical issues, such as how to convert discretized formulations into computer programs, and the numerical characteristics of the computer programs. In this book, the authors elaborate the above three methods in CEM using practical case studies, explaining their own research experiences along with a review of current literature. A full analysis is provided for typical cases, including characteristics of numerical methods, helping beginners to develop a quick and deep understanding of the essentials of CEM. Outlines practical issues, such as how to convert discretized formulations into computer programs Gives typical computer programs and their numerical characteristics along with line by line explanations of programs Uses practical examples from the authors' own work as well as in the current literature Includes exercise problems to give readers a better understanding of the material Introduces the available commercial software and their limitations This book is intended for graduate-level students in antennas and propagation, microwaves, microelectronics, and electromagnetics. This text can also be used by researchers in electrical and electronic engineering, and software developers interested in writing their own code or understanding the detailed workings of code. Companion website for the book: www.wiley.com/go/sheng/cem



Computational Methods For Electromagnetics


Computational Methods For Electromagnetics
DOWNLOAD
Author : Andrew F. Peterson
language : en
Publisher: Oxford University Press, USA
Release Date : 1998

Computational Methods For Electromagnetics written by Andrew F. Peterson and has been published by Oxford University Press, USA this book supported file pdf, txt, epub, kindle and other format this book has been release on 1998 with Electromagnetism categories.


"'Computational Methods for Electromagnetics' is an indispensable resource for making efficient and accurate formulations for electromagnetics applications and their numerical treatment. Employing a unified coherent approach that is unmatched in the field, the authors detail both integral and differential equations using the method of moments and finite-element procedures. In addition, readers will gain a thorough understanding of numerical solution procedures. Detail is provided to enable the reader to implement concepts in software and, in addition, a collection of related computer programs are available via the Internet. 'Computational Methods for Electromagnetics' is designed for graduate-level classroom use or self-study, and every chapter includes problems. It will also be of particular interest to engineers working in the aerospace, defense, telecommunications, wireless, electromagnetic compatibility, and electronic packaging industries." -- Amazon.com.



Mathematical Foundations Of Computational Electromagnetism


Mathematical Foundations Of Computational Electromagnetism
DOWNLOAD
Author : Franck Assous
language : en
Publisher: Springer
Release Date : 2018-06-09

Mathematical Foundations Of Computational Electromagnetism written by Franck Assous and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-06-09 with Mathematics categories.


This book presents an in-depth treatment of various mathematical aspects of electromagnetism and Maxwell's equations: from modeling issues to well-posedness results and the coupled models of plasma physics (Vlasov-Maxwell and Vlasov-Poisson systems) and magnetohydrodynamics (MHD). These equations and boundary conditions are discussed, including a brief review of absorbing boundary conditions. The focus then moves to well‐posedness results. The relevant function spaces are introduced, with an emphasis on boundary and topological conditions. General variational frameworks are defined for static and quasi-static problems, time-harmonic problems (including fixed frequency or Helmholtz-like problems and unknown frequency or eigenvalue problems), and time-dependent problems, with or without constraints. They are then applied to prove the well-posedness of Maxwell’s equations and their simplified models, in the various settings described above. The book is completed with a discussion of dimensionally reduced models in prismatic and axisymmetric geometries, and a survey of existence and uniqueness results for the Vlasov-Poisson, Vlasov-Maxwell and MHD equations. The book addresses mainly researchers in applied mathematics who work on Maxwell’s equations. However, it can be used for master or doctorate-level courses on mathematical electromagnetism as it requires only a bachelor-level knowledge of analysis.



Theory And Computation Of Electromagnetic Fields


Theory And Computation Of Electromagnetic Fields
DOWNLOAD
Author : Jian-Ming Jin
language : en
Publisher: John Wiley & Sons
Release Date : 2015-08-10

Theory And Computation Of Electromagnetic Fields written by Jian-Ming Jin and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-08-10 with Science categories.


Reviews the fundamental concepts behind the theory and computation of electromagnetic fields The book is divided in two parts. The first part covers both fundamental theories (such as vector analysis, Maxwell’s equations, boundary condition, and transmission line theory) and advanced topics (such as wave transformation, addition theorems, and fields in layered media) in order to benefit students at all levels. The second part of the book covers the major computational methods for numerical analysis of electromagnetic fields for engineering applications. These methods include the three fundamental approaches for numerical analysis of electromagnetic fields: the finite difference method (the finite difference time-domain method in particular), the finite element method, and the integral equation-based moment method. The second part also examines fast algorithms for solving integral equations and hybrid techniques that combine different numerical methods to seek more efficient solutions of complicated electromagnetic problems. Theory and Computation of Electromagnetic Fields, Second Edition: Provides the foundation necessary for graduate students to learn and understand more advanced topics Discusses electromagnetic analysis in rectangular, cylindrical and spherical coordinates Covers computational electromagnetics in both frequency and time domains Includes new and updated homework problems and examples Theory and Computation of Electromagnetic Fields, Second Edition is written for advanced undergraduate and graduate level electrical engineering students. This book can also be used as a reference for professional engineers interested in learning about analysis and computation skills.



Electromagnetic Field Computation By Network Methods


Electromagnetic Field Computation By Network Methods
DOWNLOAD
Author : Leopold B. Felsen
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-03-05

Electromagnetic Field Computation By Network Methods written by Leopold B. Felsen and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-03-05 with Technology & Engineering categories.


In this monograph, the authors propose a systematic and rigorous treatment of electromagnetic field representations in complex structures. The architecture suggested in this book accommodates use of different numerical methods as well as alternative Green's function representations in each of the subdomains resulting from a partitioning of the overall problem. The subdomains are regions of space where electromagnetic energy is stored and are described in terms of equivalent circuit representations based either on lumped element circuits or on transmission lines. Connection networks connect the subcircuits representing the subdomains. The connection networks are lossless, don't store energy and represent the overall problem topology. This is similar to what is done in circuit theory and permits a phrasing of the solution of EM field problems in complex structures by Network-oriented methods.



Modeling And Computations In Electromagnetics


Modeling And Computations In Electromagnetics
DOWNLOAD
Author : Habib Ammari
language : en
Publisher: Springer Science & Business Media
Release Date : 2008-01-12

Modeling And Computations In Electromagnetics written by Habib Ammari and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008-01-12 with Technology & Engineering categories.


This is nothing less than an essential text in what is a new and growing discipline. Electromagnetic modeling and computations is expanding as a result of the steadily increasing demand for designing electrical devices, modeling electromagnetic materials, and simulating electromagnetic fields in nanoscale structures. The aim of this volume is to bring together prominent worldwide experts to review state-of-the-art developments and future trends of modeling and computations in electromagnetics.



Computational Electromagnetics With Matlab Fourth Edition


Computational Electromagnetics With Matlab Fourth Edition
DOWNLOAD
Author : Matthew N.O. Sadiku
language : en
Publisher: CRC Press
Release Date : 2018-07-20

Computational Electromagnetics With Matlab Fourth Edition written by Matthew N.O. Sadiku and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-07-20 with Technology & Engineering categories.


This fourth edition of the text reflects the continuing increase in awareness and use of computational electromagnetics and incorporates advances and refinements made in recent years. Most notable among these are the improvements made to the standard algorithm for the finite-difference time-domain (FDTD) method and treatment of absorbing boundary conditions in FDTD, finite element, and transmission-line-matrix methods. It teaches the readers how to pose, numerically analyze, and solve EM problems, to give them the ability to expand their problem-solving skills using a variety of methods, and to prepare them for research in electromagnetism. Includes new homework problems in each chapter. Each chapter is updated with the current trends in CEM. Adds a new appendix on CEM codes, which covers commercial and free codes. Provides updated MATLAB code.