Computational Genetic Regulatory Networks Evolvable Self Organizing Systems


Computational Genetic Regulatory Networks Evolvable Self Organizing Systems
DOWNLOAD

Download Computational Genetic Regulatory Networks Evolvable Self Organizing Systems PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Computational Genetic Regulatory Networks Evolvable Self Organizing Systems book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page





Computational Genetic Regulatory Networks Evolvable Self Organizing Systems


Computational Genetic Regulatory Networks Evolvable Self Organizing Systems
DOWNLOAD

Author : Johannes F. Knabe
language : en
Publisher: Springer
Release Date : 2012-08-14

Computational Genetic Regulatory Networks Evolvable Self Organizing Systems written by Johannes F. Knabe and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-08-14 with Technology & Engineering categories.


Genetic Regulatory Networks (GRNs) in biological organisms are primary engines for cells to enact their engagements with environments, via incessant, continually active coupling. In differentiated multicellular organisms, tremendous complexity has arisen in the course of evolution of life on earth. Engineering and science have so far achieved no working system that can compare with this complexity, depth and scope of organization. Abstracting the dynamics of genetic regulatory control to a computational framework in which artificial GRNs in artificial simulated cells differentiate while connected in a changing topology, it is possible to apply Darwinian evolution in silico to study the capacity of such developmental/differentiated GRNs to evolve. In this volume an evolutionary GRN paradigm is investigated for its evolvability and robustness in models of biological clocks, in simple differentiated multicellularity, and in evolving artificial developing 'organisms' which grow and express an ontogeny starting from a single cell interacting with its environment, eventually including a changing local neighbourhood of other cells. These methods may help us understand the genesis, organization, adaptive plasticity, and evolvability of differentiated biological systems, and may also provide a paradigm for transferring these principles of biology's success to computational and engineering challenges at a scale not previously conceivable.



Evolutionary Computation In Gene Regulatory Network Research


Evolutionary Computation In Gene Regulatory Network Research
DOWNLOAD

Author : Hitoshi Iba
language : en
Publisher: John Wiley & Sons
Release Date : 2016-02-23

Evolutionary Computation In Gene Regulatory Network Research written by Hitoshi Iba and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-02-23 with Computers categories.


Introducing a handbook for gene regulatory network research using evolutionary computation, with applications for computer scientists, computational and system biologists This book is a step-by-step guideline for research in gene regulatory networks (GRN) using evolutionary computation (EC). The book is organized into four parts that deliver materials in a way equally attractive for a reader with training in computation or biology. Each of these sections, authored by well-known researchers and experienced practitioners, provides the relevant materials for the interested readers. The first part of this book contains an introductory background to the field. The second part presents the EC approaches for analysis and reconstruction of GRN from gene expression data. The third part of this book covers the contemporary advancements in the automatic construction of gene regulatory and reaction networks and gives direction and guidelines for future research. Finally, the last part of this book focuses on applications of GRNs with EC in other fields, such as design, engineering and robotics. • Provides a reference for current and future research in gene regulatory networks (GRN) using evolutionary computation (EC) • Covers sub-domains of GRN research using EC, such as expression profile analysis, reverse engineering, GRN evolution, applications • Contains useful contents for courses in gene regulatory networks, systems biology, computational biology, and synthetic biology • Delivers state-of-the-art research in genetic algorithms, genetic programming, and swarm intelligence Evolutionary Computation in Gene Regulatory Network Research is a reference for researchers and professionals in computer science, systems biology, and bioinformatics, as well as upper undergraduate, graduate, and postgraduate students. Hitoshi Iba is a Professor in the Department of Information and Communication Engineering, Graduate School of Information Science and Technology, at the University of Tokyo, Toyko, Japan. He is an Associate Editor of the IEEE Transactions on Evolutionary Computation and the journal of Genetic Programming and Evolvable Machines. Nasimul Noman is a lecturer in the School of Electrical Engineering and Computer Science at the University of Newcastle, NSW, Australia. From 2002 to 2012 he was a faculty member at the University of Dhaka, Bangladesh. Noman is an Editor of the BioMed Research International journal. His research interests include computational biology, synthetic biology, and bioinformatics.



Computational Evolution Of Neural And Morphological Development


Computational Evolution Of Neural And Morphological Development
DOWNLOAD

Author : Yaochu Jin
language : en
Publisher: Springer Nature
Release Date : 2023-07-14

Computational Evolution Of Neural And Morphological Development written by Yaochu Jin and has been published by Springer Nature this book supported file pdf, txt, epub, kindle and other format this book has been release on 2023-07-14 with Computers categories.


This book provides a basic yet unified overview of theory and methodologies for evolutionary developmental systems. Based on the author’s extensive research into the synergies between various approaches to artificial intelligence including evolutionary computation, artificial neural networks, and systems biology, it also examines the inherent links between biological intelligence and artificial intelligence. The book begins with an introduction to computational algorithms used to understand and simulate biological evolution and development, including evolutionary algorithms, gene regulatory network models, multi-cellular models for neural and morphological development, and computational models of neural plasticity. Chap. 2 discusses important properties of biological gene regulatory systems, including network motifs, network connectivity, robustness and evolvability. Going a step further, Chap. 3 presents methods for synthesizing regulatory motifs from scratch and creating more complex regulatory dynamics by combining basic regulatory motifs using evolutionary algorithms. Multi-cellular growth models, which can be used to simulate either neural or morphological development, are presented in Chapters 4 and 5. Chap. 6 examines the synergies and coupling between neural and morphological evolution and development. In turn, Chap. 7 provides preliminary yet promising examples of how evolutionary developmental systems can help in self-organized pattern generation, referred to as morphogenetic self-organization, highlighting the great potentials of evolutionary developmental systems. Finally, Chap. 8 rounds out the book, stressing the importance and promise of the evolutionary developmental approach to artificial intelligence. Featuring a wealth of diagrams, graphs and charts to aid in comprehension, this book offers a valuable asset for graduate students, researchers and practitioners who are interested in pursuing a different approach to artificial intelligence.



Computational Modeling Of Gene Regulatory Networks


Computational Modeling Of Gene Regulatory Networks
DOWNLOAD

Author : Hamid Bolouri
language : en
Publisher: Imperial College Press
Release Date : 2008

Computational Modeling Of Gene Regulatory Networks written by Hamid Bolouri and has been published by Imperial College Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2008 with Medical categories.


This book serves as an introduction to the myriad computational approaches to gene regulatory modeling and analysis, and is written specifically with experimental biologists in mind. Mathematical jargon is avoided and explanations are given in intuitive terms. In cases where equations are unavoidable, they are derived from first principles or, at the very least, an intuitive description is provided. Extensive examples and a large number of model descriptions are provided for use in both classroom exercises as well as self-guided exploration and learning. As such, the book is ideal for self-learning and also as the basis of a semester-long course for undergraduate and graduate students in molecular biology, bioengineering, genome sciences, or systems biology.



Applications Of Evolutionary Computation


Applications Of Evolutionary Computation
DOWNLOAD

Author : Cecilia Di Chio
language : en
Publisher: Springer
Release Date : 2010-04-03

Applications Of Evolutionary Computation written by Cecilia Di Chio and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-04-03 with Computers categories.


Evolutionary Computation (EC) techniques are e?cient, nature-inspired me- ods based on the principles of natural evolution and genetics. Due to their - ciency and simple underlying principles, these methods can be used for a diverse rangeofactivitiesincludingproblemsolving,optimization,machinelearningand pattern recognition. A large and continuously increasing number of researchers and professionals make use of EC techniques in various application domains. This volume presents a careful selection of relevant EC examples combined with a thorough examination of the techniques used in EC. The papers in the volume illustrate the current state of the art in the application of EC and should help and inspire researchers and professionals to develop e?cient EC methods for design and problem solving. All papers in this book were presented during EvoApplications 2010, which included a range of events on application-oriented aspects of EC. Since 1998, EvoApplications — formerly known as EvoWorkshops— has provided a unique opportunity for EC researchers to meet and discuss application aspects of EC and has been an important link between EC research and its application in a variety of domains. During these 12 years, new events have arisen, some have disappeared,whileothershavematuredtobecomeconferencesoftheirown,such as EuroGP in 2000, EvoCOP in 2004, and EvoBIO in 2007. And from this year, EvoApplications has become a conference as well.



Evolutionary Computation In Gene Regulatory Network Research


Evolutionary Computation In Gene Regulatory Network Research
DOWNLOAD

Author : Hitoshi Iba
language : en
Publisher: John Wiley & Sons
Release Date : 2016-01-20

Evolutionary Computation In Gene Regulatory Network Research written by Hitoshi Iba and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-01-20 with Computers categories.


Introducing a handbook for gene regulatory network research using evolutionary computation, with applications for computer scientists, computational and system biologists This book is a step-by-step guideline for research in gene regulatory networks (GRN) using evolutionary computation (EC). The book is organized into four parts that deliver materials in a way equally attractive for a reader with training in computation or biology. Each of these sections, authored by well-known researchers and experienced practitioners, provides the relevant materials for the interested readers. The first part of this book contains an introductory background to the field. The second part presents the EC approaches for analysis and reconstruction of GRN from gene expression data. The third part of this book covers the contemporary advancements in the automatic construction of gene regulatory and reaction networks and gives direction and guidelines for future research. Finally, the last part of this book focuses on applications of GRNs with EC in other fields, such as design, engineering and robotics. • Provides a reference for current and future research in gene regulatory networks (GRN) using evolutionary computation (EC) • Covers sub-domains of GRN research using EC, such as expression profile analysis, reverse engineering, GRN evolution, applications • Contains useful contents for courses in gene regulatory networks, systems biology, computational biology, and synthetic biology • Delivers state-of-the-art research in genetic algorithms, genetic programming, and swarm intelligence Evolutionary Computation in Gene Regulatory Network Research is a reference for researchers and professionals in computer science, systems biology, and bioinformatics, as well as upper undergraduate, graduate, and postgraduate students. Hitoshi Iba is a Professor in the Department of Information and Communication Engineering, Graduate School of Information Science and Technology, at the University of Tokyo, Toyko, Japan. He is an Associate Editor of the IEEE Transactions on Evolutionary Computation and the journal of Genetic Programming and Evolvable Machines. Nasimul Noman is a lecturer in the School of Electrical Engineering and Computer Science at the University of Newcastle, NSW, Australia. From 2002 to 2012 he was a faculty member at the University of Dhaka, Bangladesh. Noman is an Editor of the BioMed Research International journal. His research interests include computational biology, synthetic biology, and bioinformatics.



Self Organizing Systems


Self Organizing Systems
DOWNLOAD

Author : Christian Bettstetter
language : en
Publisher: Springer
Release Date : 2011-02-03

Self Organizing Systems written by Christian Bettstetter and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-02-03 with Computers categories.


This book constitutes the refereed proceedings of the 5th International Workshop on Self-Organizing Systems, IWSOS 2011, held in Karlsruhe, Germany, in February 2011. The 9 revised full papers presented together with 1 invited paper were carefully selected from 25 initial submissions. It was the 5th workshop in a series of multidisciplinary events dedicated to self-organization in networked systems with main focus on communication and computer networks. The papers address theoretical aspects of self-organization as well as applications in communication and computer networks and robot networks.



Morphogenetic Engineering


Morphogenetic Engineering
DOWNLOAD

Author : René Doursat
language : en
Publisher: Springer
Release Date : 2012-12-13

Morphogenetic Engineering written by René Doursat and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-13 with Technology & Engineering categories.


Generally, spontaneous pattern formation phenomena are random and repetitive, whereas elaborate devices are the deterministic product of human design. Yet, biological organisms and collective insect constructions are exceptional examples of complex systems that are both self-organized and architectural. This book is the first initiative of its kind toward establishing a new field of research, Morphogenetic Engineering, to explore the modeling and implementation of “self-architecturing” systems. Particular emphasis is placed on the programmability and computational abilities of self-organization, properties that are often underappreciated in complex systems science—while, conversely, the benefits of self-organization are often underappreciated in engineering methodologies. Altogether, the aim of this work is to provide a framework for and examples of a larger class of “self-architecturing” systems, while addressing fundamental questions such as br” How do biological organisms carry out morphogenetic tasks so reliably? br” Can we extrapolate their self-formation capabilities to engineered systems?br” Can physical systems be endowed with information (or informational systems be embedded in physics) so as to create autonomous morphologies and functions?br” What are the core principles and best practices for the design and engineering of such morphogenetic systems?



Bio Inspired Self Organizing Robotic Systems


Bio Inspired Self Organizing Robotic Systems
DOWNLOAD

Author : Yan Meng
language : en
Publisher: Springer
Release Date : 2011-05-11

Bio Inspired Self Organizing Robotic Systems written by Yan Meng and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-05-11 with Technology & Engineering categories.


Self-organizing approaches inspired from biological systems, such as social insects, genetic, molecular and cellular systems under morphogenesis, and human mental development, has enjoyed great success in advanced robotic systems that need to work in dynamic and changing environments. Compared with classical control methods for robotic systems, the major advantages of bio-inspired self-organizing robotic systems include robustness, self-repair and self-healing in the presence of system failures and/or malfunctions, high adaptability to environmental changes, and autonomous self-organization and self-reconfiguration without a centralized control. “Bio-inspired Self-organizing Robotic Systems” provides a valuable reference for scientists, practitioners and research students working on developing control algorithms for self-organizing engineered collective systems, such as swarm robotic systems, self-reconfigurable modular robots, smart material based robotic devices, unmanned aerial vehicles, and satellite constellations.



Genomic Control Process


Genomic Control Process
DOWNLOAD

Author : Isabelle Peter
language : en
Publisher: Academic Press
Release Date : 2015-01-21

Genomic Control Process written by Isabelle Peter and has been published by Academic Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-01-21 with Science categories.


Genomic Control Process explores the biological phenomena around genomic regulatory systems that control and shape animal development processes, and which determine the nature of evolutionary processes that affect body plan. Unifying and simplifying the descriptions of development and evolution by focusing on the causality in these processes, it provides a comprehensive method of considering genomic control across diverse biological processes. This book is essential for graduate researchers in genomics, systems biology and molecular biology seeking to understand deep biological processes which regulate the structure of animals during development. Covers a vast area of current biological research to produce a genome oriented regulatory bioscience of animal life Places gene regulation, embryonic and postembryonic development, and evolution of the body plan in a unified conceptual framework Provides the conceptual keys to interpret a broad developmental and evolutionary landscape with precise experimental illustrations drawn from contemporary literature Includes a range of material, from developmental phenomenology to quantitative and logic models, from phylogenetics to the molecular biology of gene regulation, from animal models of all kinds to evidence of every relevant type Demonstrates the causal power of system-level understanding of genomic control process Conceptually organizes a constellation of complex and diverse biological phenomena Investigates fundamental developmental control system logic in diverse circumstances and expresses these in conceptual models Explores mechanistic evolutionary processes, illuminating the evolutionary consequences of developmental control systems as they are encoded in the genome