Computational Genomics With R

DOWNLOAD
Download Computational Genomics With R PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Computational Genomics With R book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Computational Genomics With R
DOWNLOAD
Author : Altuna Akalin
language : en
Publisher: CRC Press
Release Date : 2020-12-16
Computational Genomics With R written by Altuna Akalin and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-16 with Mathematics categories.
Computational Genomics with R provides a starting point for beginners in genomic data analysis and also guides more advanced practitioners to sophisticated data analysis techniques in genomics. The book covers topics from R programming, to machine learning and statistics, to the latest genomic data analysis techniques. The text provides accessible information and explanations, always with the genomics context in the background. This also contains practical and well-documented examples in R so readers can analyze their data by simply reusing the code presented. As the field of computational genomics is interdisciplinary, it requires different starting points for people with different backgrounds. For example, a biologist might skip sections on basic genome biology and start with R programming, whereas a computer scientist might want to start with genome biology. After reading: You will have the basics of R and be able to dive right into specialized uses of R for computational genomics such as using Bioconductor packages. You will be familiar with statistics, supervised and unsupervised learning techniques that are important in data modeling, and exploratory analysis of high-dimensional data. You will understand genomic intervals and operations on them that are used for tasks such as aligned read counting and genomic feature annotation. You will know the basics of processing and quality checking high-throughput sequencing data. You will be able to do sequence analysis, such as calculating GC content for parts of a genome or finding transcription factor binding sites. You will know about visualization techniques used in genomics, such as heatmaps, meta-gene plots, and genomic track visualization. You will be familiar with analysis of different high-throughput sequencing data sets, such as RNA-seq, ChIP-seq, and BS-seq. You will know basic techniques for integrating and interpreting multi-omics datasets. Altuna Akalin is a group leader and head of the Bioinformatics and Omics Data Science Platform at the Berlin Institute of Medical Systems Biology, Max Delbrück Center, Berlin. He has been developing computational methods for analyzing and integrating large-scale genomics data sets since 2002. He has published an extensive body of work in this area. The framework for this book grew out of the yearly computational genomics courses he has been organizing and teaching since 2015.
Bioinformatics And Computational Biology Solutions Using R And Bioconductor
DOWNLOAD
Author : Robert Gentleman
language : en
Publisher: Springer Science & Business Media
Release Date : 2005-12-29
Bioinformatics And Computational Biology Solutions Using R And Bioconductor written by Robert Gentleman and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-12-29 with Computers categories.
Full four-color book. Some of the editors created the Bioconductor project and Robert Gentleman is one of the two originators of R. All methods are illustrated with publicly available data, and a major section of the book is devoted to fully worked case studies. Code underlying all of the computations that are shown is made available on a companion website, and readers can reproduce every number, figure, and table on their own computers.
Primer To Analysis Of Genomic Data Using R
DOWNLOAD
Author : Cedric Gondro
language : en
Publisher: Springer
Release Date : 2015-05-18
Primer To Analysis Of Genomic Data Using R written by Cedric Gondro and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-05-18 with Medical categories.
Through this book, researchers and students will learn to use R for analysis of large-scale genomic data and how to create routines to automate analytical steps. The philosophy behind the book is to start with real world raw datasets and perform all the analytical steps needed to reach final results. Though theory plays an important role, this is a practical book for graduate and undergraduate courses in bioinformatics and genomic analysis or for use in lab sessions. How to handle and manage high-throughput genomic data, create automated workflows and speed up analyses in R is also taught. A wide range of R packages useful for working with genomic data are illustrated with practical examples. The key topics covered are association studies, genomic prediction, estimation of population genetic parameters and diversity, gene expression analysis, functional annotation of results using publically available databases and how to work efficiently in R with large genomic datasets. Important principles are demonstrated and illustrated through engaging examples which invite the reader to work with the provided datasets. Some methods that are discussed in this volume include: signatures of selection, population parameters (LD, FST, FIS, etc); use of a genomic relationship matrix for population diversity studies; use of SNP data for parentage testing; snpBLUP and gBLUP for genomic prediction. Step-by-step, all the R code required for a genome-wide association study is shown: starting from raw SNP data, how to build databases to handle and manage the data, quality control and filtering measures, association testing and evaluation of results, through to identification and functional annotation of candidate genes. Similarly, gene expression analyses are shown using microarray and RNAseq data. At a time when genomic data is decidedly big, the skills from this book are critical. In recent years R has become the de facto tool for analysis of gene expression data, in addition to its prominent role in analysis of genomic data. Benefits to using R include the integrated development environment for analysis, flexibility and control of the analytic workflow. Included topics are core components of advanced undergraduate and graduate classes in bioinformatics, genomics and statistical genetics. This book is also designed to be used by students in computer science and statistics who want to learn the practical aspects of genomic analysis without delving into algorithmic details. The datasets used throughout the book may be downloaded from the publisher’s website.
Computational Exome And Genome Analysis
DOWNLOAD
Author : Peter N. Robinson
language : en
Publisher: CRC Press
Release Date : 2017-09-13
Computational Exome And Genome Analysis written by Peter N. Robinson and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2017-09-13 with Computers categories.
Exome and genome sequencing are revolutionizing medical research and diagnostics, but the computational analysis of the data has become an extremely heterogeneous and often challenging area of bioinformatics. Computational Exome and Genome Analysis provides a practical introduction to all of the major areas in the field, enabling readers to develop a comprehensive understanding of the sequencing process and the entire computational analysis pipeline.
Foundations Of Comparative Genomics
DOWNLOAD
Author : Arcady R. Mushegian
language : en
Publisher: Elsevier
Release Date : 2010-07-20
Foundations Of Comparative Genomics written by Arcady R. Mushegian and has been published by Elsevier this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-07-20 with Science categories.
This book provides an overview of computational analysis of genes and genomes, and of some most notable findings that come out of this work. Foundations of Comparative Genomics presents a historical perspective, beginning with early analysis of individual gene sequences, to present day comparison of gene repertoires encoded by completely sequenced genomes. The author discusses the underlying scientific principles of comparative genomics, argues that completion of many genome sequences started a new era in biology, and provides a personal view on several state-of-the-art issues, such as systems biology and whole-genome phylogenetic reconstructions. This book is an essential reference for researchers and students in computational biology, evolutionary biology, and genetics. - Presents an historic overview of genome biology and its achievements - Includes topics not covered in other books such as minimal and ancestral genomes - Discusses the evolutionary resilience of protein-coding genes and frequent functional convergence at the molecular level - Critically reviews horizontal gene transfer and other contentious issues - Covers comparative virology as a somewhat overlooked foundation of modern genome science
Population Genomics With R
DOWNLOAD
Author : Emmanuel Paradis
language : en
Publisher: CRC Press
Release Date : 2020-05-05
Population Genomics With R written by Emmanuel Paradis and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-05-05 with Mathematics categories.
Population Genomics With R presents a multidisciplinary approach to the analysis of population genomics. The methods treated cover a large number of topics from traditional population genetics to large-scale genomics with high-throughput sequencing data. Several dozen R packages are examined and integrated to provide a coherent software environment with a wide range of computational, statistical, and graphical tools. Small examples are used to illustrate the basics and published data are used as case studies. Readers are expected to have a basic knowledge of biology, genetics, and statistical inference methods. Graduate students and post-doctorate researchers will find resources to analyze their population genetic and genomic data as well as help them design new studies. The first four chapters review the basics of population genomics, data acquisition, and the use of R to store and manipulate genomic data. Chapter 5 treats the exploration of genomic data, an important issue when analysing large data sets. The other five chapters cover linkage disequilibrium, population genomic structure, geographical structure, past demographic events, and natural selection. These chapters include supervised and unsupervised methods, admixture analysis, an in-depth treatment of multivariate methods, and advice on how to handle GIS data. The analysis of natural selection, a traditional issue in evolutionary biology, has known a revival with modern population genomic data. All chapters include exercises. Supplemental materials are available on-line (http://ape-package.ird.fr/PGR.html).
Computational Biology And Bioinformatics
DOWNLOAD
Author : Ka-Chun Wong
language : en
Publisher:
Release Date : 2016
Computational Biology And Bioinformatics written by Ka-Chun Wong and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016 with Science categories.
Chapter 17 - Improved Protein Model Ranking through Topological Assessment -- Back Cover
Bioconductor Case Studies
DOWNLOAD
Author : Florian Hahne
language : en
Publisher: Springer Science & Business Media
Release Date : 2010-06-09
Bioconductor Case Studies written by Florian Hahne and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2010-06-09 with Science categories.
Bioconductor software has become a standard tool for the analysis and comprehension of data from high-throughput genomics experiments. Its application spans a broad field of technologies used in contemporary molecular biology. In this volume, the authors present a collection of cases to apply Bioconductor tools in the analysis of microarray gene expression data. Topics covered include: (1) import and preprocessing of data from various sources; (2) statistical modeling of differential gene expression; (3) biological metadata; (4) application of graphs and graph rendering; (5) machine learning for clustering and classification problems; (6) gene set enrichment analysis. Each chapter of this book describes an analysis of real data using hands-on example driven approaches. Short exercises help in the learning process and invite more advanced considerations of key topics. The book is a dynamic document. All the code shown can be executed on a local computer, and readers are able to reproduce every computation, figure, and table.
Multivariate Data Integration Using R
DOWNLOAD
Author : Kim-Anh Lê Cao
language : en
Publisher: CRC Press
Release Date : 2021-11-08
Multivariate Data Integration Using R written by Kim-Anh Lê Cao and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-11-08 with Mathematics categories.
Large biological data, which are often noisy and high-dimensional, have become increasingly prevalent in biology and medicine. There is a real need for good training in statistics, from data exploration through to analysis and interpretation. This book provides an overview of statistical and dimension reduction methods for high-throughput biological data, with a specific focus on data integration. It starts with some biological background, key concepts underlying the multivariate methods, and then covers an array of methods implemented using the mixOmics package in R. Features: Provides a broad and accessible overview of methods for multi-omics data integration Covers a wide range of multivariate methods, each designed to answer specific biological questions Includes comprehensive visualisation techniques to aid in data interpretation Includes many worked examples and case studies using real data Includes reproducible R code for each multivariate method, using the mixOmics package The book is suitable for researchers from a wide range of scientific disciplines wishing to apply these methods to obtain new and deeper insights into biological mechanisms and biomedical problems. The suite of tools introduced in this book will enable students and scientists to work at the interface between, and provide critical collaborative expertise to, biologists, bioinformaticians, statisticians and clinicians.