Concepts Of Nonparametric Theory

DOWNLOAD
Download Concepts Of Nonparametric Theory PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Concepts Of Nonparametric Theory book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page
Concepts Of Nonparametric Theory
DOWNLOAD
Author : John Winsor Pratt
language : en
Publisher:
Release Date : 1981-01-01
Concepts Of Nonparametric Theory written by John Winsor Pratt and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1981-01-01 with Nonparametric statistics categories.
Concepts Of Nonparametric Theory
DOWNLOAD
Author : J.W. Pratt
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-12-06
Concepts Of Nonparametric Theory written by J.W. Pratt and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.
This book explores both non parametric and general statistical ideas by developing non parametric procedures in simple situations. The major goal is to give the reader a thorough intuitive understanding of the concepts underlying nonparametric procedures and a full appreciation of the properties and operating characteristics of those procedures covered. This book differs from most statistics books by including considerable philosophical and methodological discussion. Special attention is given to discussion of the strengths and weaknesses of various statistical methods and approaches. Difficulties that often arise in applying statistical theory to real data also receive substantial attention. The approach throughout is more conceptual than mathematical. The "Theorem-Proof" format is avoided; generally, properties are "shown," rather than "proved." In most cases the ideas behind the proof of an im portant result are discussed intuitively in the text and formal details are left as an exercise for the reader. We feel that the reader will learn more from working such things out than from checking step-by-step a complete presen tation of all details.
Concepts Of Nonparametric Theory
DOWNLOAD
Author : J. W. Pratt
language : en
Publisher:
Release Date : 1981-12-09
Concepts Of Nonparametric Theory written by J. W. Pratt and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 1981-12-09 with categories.
Theory Of Nonparametric Tests
DOWNLOAD
Author : Thorsten Dickhaus
language : en
Publisher: Springer
Release Date : 2018-03-27
Theory Of Nonparametric Tests written by Thorsten Dickhaus and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-03-27 with Mathematics categories.
This textbook provides a self-contained presentation of the main concepts and methods of nonparametric statistical testing, with a particular focus on the theoretical foundations of goodness-of-fit tests, rank tests, resampling tests, and projection tests. The substitution principle is employed as a unified approach to the nonparametric test problems discussed. In addition to mathematical theory, it also includes numerous examples and computer implementations. The book is intended for advanced undergraduate, graduate, and postdoc students as well as young researchers. Readers should be familiar with the basic concepts of mathematical statistics typically covered in introductory statistics courses.
Nonparametric And Semiparametric Models
DOWNLOAD
Author : Wolfgang Karl Härdle
language : en
Publisher: Springer Science & Business Media
Release Date : 2012-08-27
Nonparametric And Semiparametric Models written by Wolfgang Karl Härdle and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-08-27 with Mathematics categories.
The statistical and mathematical principles of smoothing with a focus on applicable techniques are presented in this book. It naturally splits into two parts: The first part is intended for undergraduate students majoring in mathematics, statistics, econometrics or biometrics whereas the second part is intended to be used by master and PhD students or researchers. The material is easy to accomplish since the e-book character of the text gives a maximum of flexibility in learning (and teaching) intensity.
A Distribution Free Theory Of Nonparametric Regression
DOWNLOAD
Author : László Györfi
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-04-18
A Distribution Free Theory Of Nonparametric Regression written by László Györfi and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-04-18 with Mathematics categories.
The regression estimation problem has a long history. Already in 1632 Galileo Galilei used a procedure which can be interpreted as ?tting a linear relationship to contaminated observed data. Such ?tting of a line through a cloud of points is the classical linear regression problem. A solution of this problem is provided by the famous principle of least squares, which was discovered independently by A. M. Legendre and C. F. Gauss and published in 1805 and 1809, respectively. The principle of least squares can also be applied to construct nonparametric regression estimates, where one does not restrict the class of possible relationships, and will be one of the approaches studied in this book. Linear regression analysis, based on the concept of a regression function, was introduced by F. Galton in 1889, while a probabilistic approach in the context of multivariate normal distributions was already given by A. B- vais in 1846. The ?rst nonparametric regression estimate of local averaging type was proposed by J. W. Tukey in 1947. The partitioning regression - timate he introduced, by analogy to the classical partitioning (histogram) density estimate, can be regarded as a special least squares estimate.
Introduction To Nonparametric Regression
DOWNLOAD
Author : K. Takezawa
language : en
Publisher: John Wiley & Sons
Release Date : 2005-12-02
Introduction To Nonparametric Regression written by K. Takezawa and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2005-12-02 with Mathematics categories.
An easy-to-grasp introduction to nonparametric regression This book's straightforward, step-by-step approach provides an excellent introduction to the field for novices of nonparametric regression. Introduction to Nonparametric Regression clearly explains the basic concepts underlying nonparametric regression and features: * Thorough explanations of various techniques, which avoid complex mathematics and excessive abstract theory to help readers intuitively grasp the value of nonparametric regression methods * Statistical techniques accompanied by clear numerical examples that further assist readers in developing and implementing their own solutions * Mathematical equations that are accompanied by a clear explanation of how the equation was derived The first chapter leads with a compelling argument for studying nonparametric regression and sets the stage for more advanced discussions. In addition to covering standard topics, such as kernel and spline methods, the book provides in-depth coverage of the smoothing of histograms, a topic generally not covered in comparable texts. With a learning-by-doing approach, each topical chapter includes thorough S-Plus? examples that allow readers to duplicate the same results described in the chapter. A separate appendix is devoted to the conversion of S-Plus objects to R objects. In addition, each chapter ends with a set of problems that test readers' grasp of key concepts and techniques and also prepares them for more advanced topics. This book is recommended as a textbook for undergraduate and graduate courses in nonparametric regression. Only a basic knowledge of linear algebra and statistics is required. In addition, this is an excellent resource for researchers and engineers in such fields as pattern recognition, speech understanding, and data mining. Practitioners who rely on nonparametric regression for analyzing data in the physical, biological, and social sciences, as well as in finance and economics, will find this an unparalleled resource.
Nonparametric Statistical Inference
DOWNLOAD
Author : Jean Dickinson Gibbons
language : en
Publisher: CRC Press
Release Date : 2014-03-10
Nonparametric Statistical Inference written by Jean Dickinson Gibbons and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-03-10 with Mathematics categories.
Thoroughly revised and reorganized, the fourth edition presents in-depth coverage of the theory and methods of the most widely used nonparametric procedures in statistical analysis and offers example applications appropriate for all areas of the social, behavioral, and life sciences. The book presents new material on the quantiles, the calculation of exact and simulated power, multiple comparisons, additional goodness-of-fit tests, methods of analysis of count data, and modern computer applications using MINITAB, SAS, and STATXACT. It includes tabular guides for simplified applications of tests and finding P values and confidence interval estimates.
All Of Nonparametric Statistics
DOWNLOAD
Author : Larry Wasserman
language : en
Publisher: Springer Science & Business Media
Release Date : 2006-09-10
All Of Nonparametric Statistics written by Larry Wasserman and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2006-09-10 with Mathematics categories.
There are many books on various aspects of nonparametric inference such as density estimation, nonparametric regression, bootstrapping, and wavelets methods. But it is hard to ?nd all these topics covered in one place. The goal of this text is to provide readers with a single book where they can ?nd a brief account of many of the modern topics in nonparametric inference. The book is aimed at master’s-level or Ph. D. -level statistics and computer science students. It is also suitable for researchersin statistics, machine lea- ing and data mining who want to get up to speed quickly on modern n- parametric methods. My goal is to quickly acquaint the reader with the basic concepts in many areas rather than tackling any one topic in great detail. In the interest of covering a wide range of topics, while keeping the book short, I have opted to omit most proofs. Bibliographic remarks point the reader to references that contain further details. Of course, I have had to choose topics to include andto omit,the title notwithstanding. For the mostpart,I decided to omit topics that are too big to cover in one chapter. For example, I do not cover classi?cation or nonparametric Bayesian inference. The book developed from my lecture notes for a half-semester (20 hours) course populated mainly by master’s-level students. For Ph. D.
Mathematical Nonparametric Statistics
DOWNLOAD
Author : Edward B. Manoukian
language : en
Publisher: Taylor & Francis
Release Date : 2022-04-18
Mathematical Nonparametric Statistics written by Edward B. Manoukian and has been published by Taylor & Francis this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-04-18 with Mathematics categories.
First published in 1986. Primarily a reference text, Mathematical Nonparametric Statistics provides mathematicians and students with a systematic mathematical analysis and the fine points of nonparametrical statistical procedures and models used in practice. Divided into five sections and beginning with an extensive chapter on the fundamentals of mathematical statistical methods, its coverage of such topics as the Jackknife method, the Kolmogorov-Smirnov statistic, Box's method and the ch-squared test of fit is rigorous. Written for audiences with differing backgounds in mathematics, the book is of special use to those in the management sciences, industrial engineering, psychology and economics, as well as mathematics.