[PDF] Continuous Time Markov Decision Processes - eBooks Review

Continuous Time Markov Decision Processes


Continuous Time Markov Decision Processes
DOWNLOAD

Download Continuous Time Markov Decision Processes PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Continuous Time Markov Decision Processes book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Continuous Time Markov Decision Processes


Continuous Time Markov Decision Processes
DOWNLOAD
Author : Xianping Guo
language : en
Publisher: Springer Science & Business Media
Release Date : 2009-09-18

Continuous Time Markov Decision Processes written by Xianping Guo and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2009-09-18 with Mathematics categories.


Continuous-time Markov decision processes (MDPs), also known as controlled Markov chains, are used for modeling decision-making problems that arise in operations research (for instance, inventory, manufacturing, and queueing systems), computer science, communications engineering, control of populations (such as fisheries and epidemics), and management science, among many other fields. This volume provides a unified, systematic, self-contained presentation of recent developments on the theory and applications of continuous-time MDPs. The MDPs in this volume include most of the cases that arise in applications, because they allow unbounded transition and reward/cost rates. Much of the material appears for the first time in book form.



Examples In Markov Decision Processes


Examples In Markov Decision Processes
DOWNLOAD
Author : A. B. Piunovskiy
language : en
Publisher: World Scientific
Release Date : 2012

Examples In Markov Decision Processes written by A. B. Piunovskiy and has been published by World Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012 with Mathematics categories.


This invaluable book provides approximately eighty examples illustrating the theory of controlled discrete-time Markov processes. Except for applications of the theory to real-life problems like stock exchange, queues, gambling, optimal search etc, the main attention is paid to counter-intuitive, unexpected properties of optimization problems. Such examples illustrate the importance of conditions imposed in the theorems on Markov Decision Processes. Many of the examples are based upon examples published earlier in journal articles or textbooks while several other examples are new. The aim was to collect them together in one reference book which should be considered as a complement to existing monographs on Markov decision processes.The book is self-contained and unified in presentation.The main theoretical statements and constructions are provided, and particular examples can be read independently of others. Examples in Markov Decision Processes is an essential source of reference for mathematicians and all those who apply the optimal control theory to practical purposes. When studying or using mathematical methods, the researcher must understand what can happen if some of the conditions imposed in rigorous theorems are not satisfied. Many examples confirming the importance of such conditions were published in different journal articles which are often difficult to find. This book brings together examples based upon such sources, along with several new ones. In addition, it indicates the areas where Markov decision processes can be used. Active researchers can refer to this book on applicability of mathematical methods and theorems. It is also suitable reading for graduate and research students where they will better understand the theory.



Markov Decision Processes


Markov Decision Processes
DOWNLOAD
Author : Martin L. Puterman
language : en
Publisher: John Wiley & Sons
Release Date : 2014-08-28

Markov Decision Processes written by Martin L. Puterman and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2014-08-28 with Mathematics categories.


The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "This text is unique in bringing together so many results hitherto found only in part in other texts and papers. . . . The text is fairly self-contained, inclusive of some basic mathematical results needed, and provides a rich diet of examples, applications, and exercises. The bibliographical material at the end of each chapter is excellent, not only from a historical perspective, but because it is valuable for researchers in acquiring a good perspective of the MDP research potential." —Zentralblatt fur Mathematik ". . . it is of great value to advanced-level students, researchers, and professional practitioners of this field to have now a complete volume (with more than 600 pages) devoted to this topic. . . . Markov Decision Processes: Discrete Stochastic Dynamic Programming represents an up-to-date, unified, and rigorous treatment of theoretical and computational aspects of discrete-time Markov decision processes." —Journal of the American Statistical Association



Markov Decision Processes In Artificial Intelligence


Markov Decision Processes In Artificial Intelligence
DOWNLOAD
Author : Olivier Sigaud
language : en
Publisher: John Wiley & Sons
Release Date : 2013-03-04

Markov Decision Processes In Artificial Intelligence written by Olivier Sigaud and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-03-04 with Technology & Engineering categories.


Markov Decision Processes (MDPs) are a mathematical framework for modeling sequential decision problems under uncertainty as well as reinforcement learning problems. Written by experts in the field, this book provides a global view of current research using MDPs in artificial intelligence. It starts with an introductory presentation of the fundamental aspects of MDPs (planning in MDPs, reinforcement learning, partially observable MDPs, Markov games and the use of non-classical criteria). It then presents more advanced research trends in the field and gives some concrete examples using illustrative real life applications.



Markov Decision Processes With Applications To Finance


Markov Decision Processes With Applications To Finance
DOWNLOAD
Author : Nicole Bäuerle
language : en
Publisher: Springer Science & Business Media
Release Date : 2011-06-06

Markov Decision Processes With Applications To Finance written by Nicole Bäuerle and has been published by Springer Science & Business Media this book supported file pdf, txt, epub, kindle and other format this book has been release on 2011-06-06 with Mathematics categories.


The theory of Markov decision processes focuses on controlled Markov chains in discrete time. The authors establish the theory for general state and action spaces and at the same time show its application by means of numerous examples, mostly taken from the fields of finance and operations research. By using a structural approach many technicalities (concerning measure theory) are avoided. They cover problems with finite and infinite horizons, as well as partially observable Markov decision processes, piecewise deterministic Markov decision processes and stopping problems. The book presents Markov decision processes in action and includes various state-of-the-art applications with a particular view towards finance. It is useful for upper-level undergraduates, Master's students and researchers in both applied probability and finance, and provides exercises (without solutions).



Continuous Time Markov Chains And Applications


Continuous Time Markov Chains And Applications
DOWNLOAD
Author : George G. Yin
language : en
Publisher: Springer
Release Date : 2012-12-06

Continuous Time Markov Chains And Applications written by George G. Yin and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2012-12-06 with Mathematics categories.


This book is concerned with continuous-time Markov chains. It develops an integrated approach to singularly perturbed Markovian systems, and reveals interrelations of stochastic processes and singular perturbations. In recent years, Markovian formulations have been used routinely for nu merous real-world systems under uncertainties. Quite often, the underlying Markov chain is subject to rather frequent fluctuations and the correspond ing states are naturally divisible to a number of groups such that the chain fluctuates very rapidly among different states within a group, but jumps less frequently from one group to another. Various applications in engineer ing, economics, and biological and physical sciences have posed increasing demands on an in-depth study of such systems. A basic issue common to many different fields is the understanding of the distribution and the struc ture of the underlying uncertainty. Such needs become even more pressing when we deal with complex and/or large-scale Markovian models, whose closed-form solutions are usually very difficult to obtain. Markov chain, a well-known subject, has been studied by a host of re searchers for many years. While nonstationary cases have been treated in the literature, much emphasis has been on stationary Markov chains and their basic properties such as ergodicity, recurrence, and stability. In contrast, this book focuses on singularly perturbed nonstationary Markov chains and their asymptotic properties. Singular perturbation theory has a long history and is a powerful tool for a wide variety of applications.



Markov Processes For Stochastic Modeling


Markov Processes For Stochastic Modeling
DOWNLOAD
Author : Oliver Ibe
language : en
Publisher: Newnes
Release Date : 2013-05-22

Markov Processes For Stochastic Modeling written by Oliver Ibe and has been published by Newnes this book supported file pdf, txt, epub, kindle and other format this book has been release on 2013-05-22 with Mathematics categories.


Markov processes are processes that have limited memory. In particular, their dependence on the past is only through the previous state. They are used to model the behavior of many systems including communications systems, transportation networks, image segmentation and analysis, biological systems and DNA sequence analysis, random atomic motion and diffusion in physics, social mobility, population studies, epidemiology, animal and insect migration, queueing systems, resource management, dams, financial engineering, actuarial science, and decision systems. Covering a wide range of areas of application of Markov processes, this second edition is revised to highlight the most important aspects as well as the most recent trends and applications of Markov processes. The author spent over 16 years in the industry before returning to academia, and he has applied many of the principles covered in this book in multiple research projects. Therefore, this is an applications-oriented book that also includes enough theory to provide a solid ground in the subject for the reader. - Presents both the theory and applications of the different aspects of Markov processes - Includes numerous solved examples as well as detailed diagrams that make it easier to understand the principle being presented - Discusses different applications of hidden Markov models, such as DNA sequence analysis and speech analysis.



Stochastic Optimization In Continuous Time


Stochastic Optimization In Continuous Time
DOWNLOAD
Author : Fwu-Ranq Chang
language : en
Publisher: Cambridge University Press
Release Date : 2004-04-26

Stochastic Optimization In Continuous Time written by Fwu-Ranq Chang and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-04-26 with Business & Economics categories.


First published in 2004, this is a rigorous but user-friendly book on the application of stochastic control theory to economics. A distinctive feature of the book is that mathematical concepts are introduced in a language and terminology familiar to graduate students of economics. The standard topics of many mathematics, economics and finance books are illustrated with real examples documented in the economic literature. Moreover, the book emphasises the dos and don'ts of stochastic calculus, cautioning the reader that certain results and intuitions cherished by many economists do not extend to stochastic models. A special chapter (Chapter 5) is devoted to exploring various methods of finding a closed-form representation of the value function of a stochastic control problem, which is essential for ascertaining the optimal policy functions. The book also includes many practice exercises for the reader. Notes and suggested readings are provided at the end of each chapter for more references and possible extensions.



Constrained Markov Decision Processes


Constrained Markov Decision Processes
DOWNLOAD
Author : Eitan Altman
language : en
Publisher: CRC Press
Release Date : 1999-03-30

Constrained Markov Decision Processes written by Eitan Altman and has been published by CRC Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 1999-03-30 with Mathematics categories.


This book provides a unified approach for the study of constrained Markov decision processes with a finite state space and unbounded costs. Unlike the single controller case considered in many other books, the author considers a single controller with several objectives, such as minimizing delays and loss, probabilities, and maximization of throughputs. It is desirable to design a controller that minimizes one cost objective, subject to inequality constraints on other cost objectives. This framework describes dynamic decision problems arising frequently in many engineering fields. A thorough overview of these applications is presented in the introduction. The book is then divided into three sections that build upon each other. The first part explains the theory for the finite state space. The author characterizes the set of achievable expected occupation measures as well as performance vectors, and identifies simple classes of policies among which optimal policies exist. This allows the reduction of the original dynamic into a linear program. A Lagranian approach is then used to derive the dual linear program using dynamic programming techniques. In the second part, these results are extended to the infinite state space and action spaces. The author provides two frameworks: the case where costs are bounded below and the contracting framework. The third part builds upon the results of the first two parts and examines asymptotical results of the convergence of both the value and the policies in the time horizon and in the discount factor. Finally, several state truncation algorithms that enable the approximation of the solution of the original control problem via finite linear programs are given.



Partially Observed Markov Decision Processes


Partially Observed Markov Decision Processes
DOWNLOAD
Author : Vikram Krishnamurthy
language : en
Publisher: Cambridge University Press
Release Date : 2016-03-21

Partially Observed Markov Decision Processes written by Vikram Krishnamurthy and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016-03-21 with Mathematics categories.


This book covers formulation, algorithms, and structural results of partially observed Markov decision processes, whilst linking theory to real-world applications in controlled sensing. Computations are kept to a minimum, enabling students and researchers in engineering, operations research, and economics to understand the methods and determine the structure of their optimal solution.