[PDF] Convex Optimization Algorithms And Statistical Bounds For Learning Structured Models - eBooks Review

Convex Optimization Algorithms And Statistical Bounds For Learning Structured Models


Convex Optimization Algorithms And Statistical Bounds For Learning Structured Models
DOWNLOAD

Download Convex Optimization Algorithms And Statistical Bounds For Learning Structured Models PDF/ePub or read online books in Mobi eBooks. Click Download or Read Online button to get Convex Optimization Algorithms And Statistical Bounds For Learning Structured Models book now. This website allows unlimited access to, at the time of writing, more than 1.5 million titles, including hundreds of thousands of titles in various foreign languages. If the content not found or just blank you must refresh this page



Convex Optimization Algorithms And Statistical Bounds For Learning Structured Models


Convex Optimization Algorithms And Statistical Bounds For Learning Structured Models
DOWNLOAD
Author : Amin Jalali
language : en
Publisher:
Release Date : 2016

Convex Optimization Algorithms And Statistical Bounds For Learning Structured Models written by Amin Jalali and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016 with categories.


Design and analysis of tractable methods for estimation of structured models from massive high-dimensional datasets has been a topic of research in statistics, machine learning and engineering for many years. Regularization, the act of simultaneously optimizing a data fidelity term and a structure-promoting term, is a widely used approach in different machine learning and signal processing tasks. Appropriate regularizers, with efficient optimization techniques, can help in exploiting the prior structural information on the underlying model. This dissertation is focused on exploring new structures, devising efficient convex relaxations for exploiting them, and studying the statistical performance of such estimators. We address three problems under this framework on which we elaborate below. In many applications, we aim to reconstruct models that are known to have more than one structure at the same time. Having a rich literature on exploiting common structures like sparsity and low rank at hand, one could pose similar questions about simultaneously structured models with several low-dimensional structures. Using the respective known convex penalties for the involved structures, we show that multi-objective optimization with these penalties can do no better, order-wise, than exploiting only one of the present structures. This suggests that to fully exploit the multiple structures, we need an entirely new convex relaxation, not one that combines the convex relaxations for each structure. This work, while applicable for general structures, yields interesting results for the case of sparse and low-rank matrices which arise in applications such as sparse phase retrieval and quadratic compressed sensing. We then turn our attention to the design and efficient optimization of convex penalties for structured learning. We introduce a general class of semidefinite representable penalties, called variational Gram functions (VGF), and provide a list of optimization tools for solving regularized estimation problems involving VGFs. Exploiting the variational structure in VGFs, as well as the variational structure in many common loss functions, enables us to devise efficient optimization techniques as well as to provide guarantees on the solutions of many regularized loss minimization problems. Finally, we explore the statistical and computational trade-offs in the community detection problem. We study recovery regimes and algorithms for community detection in sparse graphs generated under a heterogeneous stochastic block model in its most general form. In this quest, we were able to expand the applicability of semidefinite programs (in exact community detection) to some new and important network configurations, which provides us with a better understanding of the ability of semidefinite programs in reaching statistical identifiability limits.



Introduction To Online Convex Optimization Second Edition


Introduction To Online Convex Optimization Second Edition
DOWNLOAD
Author : Elad Hazan
language : en
Publisher: MIT Press
Release Date : 2022-09-06

Introduction To Online Convex Optimization Second Edition written by Elad Hazan and has been published by MIT Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-09-06 with Computers categories.


New edition of a graduate-level textbook on that focuses on online convex optimization, a machine learning framework that views optimization as a process. In many practical applications, the environment is so complex that it is not feasible to lay out a comprehensive theoretical model and use classical algorithmic theory and/or mathematical optimization. Introduction to Online Convex Optimization presents a robust machine learning approach that contains elements of mathematical optimization, game theory, and learning theory: an optimization method that learns from experience as more aspects of the problem are observed. This view of optimization as a process has led to some spectacular successes in modeling and systems that have become part of our daily lives. Based on the “Theoretical Machine Learning” course taught by the author at Princeton University, the second edition of this widely used graduate level text features: Thoroughly updated material throughout New chapters on boosting, adaptive regret, and approachability and expanded exposition on optimization Examples of applications, including prediction from expert advice, portfolio selection, matrix completion and recommendation systems, SVM training, offered throughout Exercises that guide students in completing parts of proofs



Convex Optimization Algorithms


Convex Optimization Algorithms
DOWNLOAD
Author : Dimitri Bertsekas
language : en
Publisher: Athena Scientific
Release Date : 2015-02-01

Convex Optimization Algorithms written by Dimitri Bertsekas and has been published by Athena Scientific this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-02-01 with Mathematics categories.


This book provides a comprehensive and accessible presentation of algorithms for solving convex optimization problems. It relies on rigorous mathematical analysis, but also aims at an intuitive exposition that makes use of visualization where possible. This is facilitated by the extensive use of analytical and algorithmic concepts of duality, which by nature lend themselves to geometrical interpretation. The book places particular emphasis on modern developments, and their widespread applications in fields such as large-scale resource allocation problems, signal processing, and machine learning. The book is aimed at students, researchers, and practitioners, roughly at the first year graduate level. It is similar in style to the author's 2009"Convex Optimization Theory" book, but can be read independently. The latter book focuses on convexity theory and optimization duality, while the present book focuses on algorithmic issues. The two books share notation, and together cover the entire finite-dimensional convex optimization methodology. To facilitate readability, the statements of definitions and results of the "theory book" are reproduced without proofs in Appendix B.



Large Scale Convex Optimization


Large Scale Convex Optimization
DOWNLOAD
Author : Ernest K. Ryu
language : en
Publisher: Cambridge University Press
Release Date : 2022-12-01

Large Scale Convex Optimization written by Ernest K. Ryu and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2022-12-01 with Mathematics categories.


Starting from where a first course in convex optimization leaves off, this text presents a unified analysis of first-order optimization methods – including parallel-distributed algorithms – through the abstraction of monotone operators. With the increased computational power and availability of big data over the past decade, applied disciplines have demanded that larger and larger optimization problems be solved. This text covers the first-order convex optimization methods that are uniquely effective at solving these large-scale optimization problems. Readers will have the opportunity to construct and analyze many well-known classical and modern algorithms using monotone operators, and walk away with a solid understanding of the diverse optimization algorithms. Graduate students and researchers in mathematical optimization, operations research, electrical engineering, statistics, and computer science will appreciate this concise introduction to the theory of convex optimization algorithms.



Convex Optimization


Convex Optimization
DOWNLOAD
Author : Sébastien Bubeck
language : en
Publisher: Foundations and Trends (R) in Machine Learning
Release Date : 2015-11-12

Convex Optimization written by Sébastien Bubeck and has been published by Foundations and Trends (R) in Machine Learning this book supported file pdf, txt, epub, kindle and other format this book has been release on 2015-11-12 with Convex domains categories.


This monograph presents the main complexity theorems in convex optimization and their corresponding algorithms. It begins with the fundamental theory of black-box optimization and proceeds to guide the reader through recent advances in structural optimization and stochastic optimization. The presentation of black-box optimization, strongly influenced by the seminal book by Nesterov, includes the analysis of cutting plane methods, as well as (accelerated) gradient descent schemes. Special attention is also given to non-Euclidean settings (relevant algorithms include Frank-Wolfe, mirror descent, and dual averaging), and discussing their relevance in machine learning. The text provides a gentle introduction to structural optimization with FISTA (to optimize a sum of a smooth and a simple non-smooth term), saddle-point mirror prox (Nemirovski's alternative to Nesterov's smoothing), and a concise description of interior point methods. In stochastic optimization it discusses stochastic gradient descent, mini-batches, random coordinate descent, and sublinear algorithms. It also briefly touches upon convex relaxation of combinatorial problems and the use of randomness to round solutions, as well as random walks based methods.



Lectures On Convex Optimization


Lectures On Convex Optimization
DOWNLOAD
Author : Yurii Nesterov
language : en
Publisher: Springer
Release Date : 2018-11-19

Lectures On Convex Optimization written by Yurii Nesterov and has been published by Springer this book supported file pdf, txt, epub, kindle and other format this book has been release on 2018-11-19 with Mathematics categories.


This book provides a comprehensive, modern introduction to convex optimization, a field that is becoming increasingly important in applied mathematics, economics and finance, engineering, and computer science, notably in data science and machine learning. Written by a leading expert in the field, this book includes recent advances in the algorithmic theory of convex optimization, naturally complementing the existing literature. It contains a unified and rigorous presentation of the acceleration techniques for minimization schemes of first- and second-order. It provides readers with a full treatment of the smoothing technique, which has tremendously extended the abilities of gradient-type methods. Several powerful approaches in structural optimization, including optimization in relative scale and polynomial-time interior-point methods, are also discussed in detail. Researchers in theoretical optimization as well as professionals working on optimization problems will find this book very useful. It presents many successful examples of how to develop very fast specialized minimization algorithms. Based on the author’s lectures, it can naturally serve as the basis for introductory and advanced courses in convex optimization for students in engineering, economics, computer science and mathematics.



Linear And Convex Optimization


Linear And Convex Optimization
DOWNLOAD
Author : Michael H. Veatch
language : en
Publisher: John Wiley & Sons
Release Date : 2020-12-16

Linear And Convex Optimization written by Michael H. Veatch and has been published by John Wiley & Sons this book supported file pdf, txt, epub, kindle and other format this book has been release on 2020-12-16 with Mathematics categories.


Discover the practical impacts of current methods of optimization with this approachable, one-stop resource Linear and Convex Optimization: A Mathematical Approach delivers a concise and unified treatment of optimization with a focus on developing insights in problem structure, modeling, and algorithms. Convex optimization problems are covered in detail because of their many applications and the fast algorithms that have been developed to solve them. Experienced researcher and undergraduate teacher Mike Veatch presents the main algorithms used in linear, integer, and convex optimization in a mathematical style with an emphasis on what makes a class of problems practically solvable and developing insight into algorithms geometrically. Principles of algorithm design and the speed of algorithms are discussed in detail, requiring no background in algorithms. The book offers a breadth of recent applications to demonstrate the many areas in which optimization is successfully and frequently used, while the process of formulating optimization problems is addressed throughout. Linear and Convex Optimization contains a wide variety of features, including: Coverage of current methods in optimization in a style and level that remains appealing and accessible for mathematically trained undergraduates Enhanced insights into a few algorithms, instead of presenting many algorithms in cursory fashion An emphasis on the formulation of large, data-driven optimization problems Inclusion of linear, integer, and convex optimization, covering many practically solvable problems using algorithms that share many of the same concepts Presentation of a broad range of applications to fields like online marketing, disaster response, humanitarian development, public sector planning, health delivery, manufacturing, and supply chain management Ideal for upper level undergraduate mathematics majors with an interest in practical applications of mathematics, this book will also appeal to business, economics, computer science, and operations research majors with at least two years of mathematics training.



Convex Optimization


Convex Optimization
DOWNLOAD
Author : Stephen P. Boyd
language : en
Publisher: Cambridge University Press
Release Date : 2004-03-08

Convex Optimization written by Stephen P. Boyd and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2004-03-08 with Business & Economics categories.


Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.



Algorithms For Convex Optimization


Algorithms For Convex Optimization
DOWNLOAD
Author : Nisheeth K. Vishnoi
language : en
Publisher: Cambridge University Press
Release Date : 2021-10-31

Algorithms For Convex Optimization written by Nisheeth K. Vishnoi and has been published by Cambridge University Press this book supported file pdf, txt, epub, kindle and other format this book has been release on 2021-10-31 with Computers categories.


In the last few years, Algorithms for Convex Optimization have revolutionized algorithm design, both for discrete and continuous optimization problems. For problems like maximum flow, maximum matching, and submodular function minimization, the fastest algorithms involve essential methods such as gradient descent, mirror descent, interior point methods, and ellipsoid methods. The goal of this self-contained book is to enable researchers and professionals in computer science, data science, and machine learning to gain an in-depth understanding of these algorithms. The text emphasizes how to derive key algorithms for convex optimization from first principles and how to establish precise running time bounds. This modern text explains the success of these algorithms in problems of discrete optimization, as well as how these methods have significantly pushed the state of the art of convex optimization itself.



Methods For Convex Optimization And Statistical Learning


Methods For Convex Optimization And Statistical Learning
DOWNLOAD
Author : Paul Edward Grigas
language : en
Publisher:
Release Date : 2016

Methods For Convex Optimization And Statistical Learning written by Paul Edward Grigas and has been published by this book supported file pdf, txt, epub, kindle and other format this book has been release on 2016 with categories.


We present several contributions at the interface of first-order methods for convex optimization and problems in statistical machine learning. In the first part of this thesis, we present new results for the Frank-Wolfe method, with a particular focus on: (i) novel computational guarantees that apply for any step-size sequence, (ii) a novel adjustment to the basic algorithm to better account for warm-start information, and (iii) extensions of the computational guarantees that hold in the presence of approximate subproblem and/or gradient computations. In the second part of the thesis, we present a unifying framework for interpreting "greedy" first-order methods -- namely Frank-Wolfe and greedy coordinate descent -- as instantiations of the dual averaging method of Nesterov, and we discuss the implications thereof. In the third part of the thesis, we present an extension of the Frank-Wolfe method that is designed to induce near-optimal low-rank solutions for nuclear norm regularized matrix completion and, for more general problems, induces near-optimal "well-structured" solutions. We establish computational guarantees that trade off efficiency in computing near-optimal solutions with upper bounds on the rank of iterates. We then present extensive computational results that show significant computational advantages over existing related approaches, in terms of delivering low rank and low run-time to compute a target optimality gap. In the fourth part of the thesis, we analyze boosting algorithms in linear regression from the perspective modern first-order methods in convex optimization. We show that classic boosting algorithms in linear regression can be viewed as subgradient descent to minimize the maximum absolute correlation between features and residuals. We also propose a slightly modified boosting algorithm that yields an algorithm for the Lasso, and that computes the Lasso path. Our perspective leads to first-ever comprehensive computational guarantees for all of these boosting algorithms, which provide a precise theoretical description of the amount of data-fidelity and regularization imparted by running a boosting algorithm, for any dataset. In the fifth and final part of the thesis, we present several related results in the contexts of boosting algorithms for logistic regression and the AdaBoost algorithm.